DOI QR코드

DOI QR Code

Dust Deposition and Weathering in Soils of Seoraksan

설악산 토양 내 황사의 퇴적과 풍화

  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University)
  • 정기영 (안동대학교 지구환경과학과)
  • Received : 2021.12.03
  • Accepted : 2021.12.20
  • Published : 2021.12.31

Abstract

Asian dust (Hwangsa) deposited on the surface of the Korean Peninsula is difficult to recognize their existence in mountainous terrain undergoing active erosion and weathering. This study examined Asian dust sediments mixed in soils by analysing clay mineralogy, mineral composition, and microtextures of fine silt (< 20 ㎛) in the alkali feldspar granite area of Seoraksan. The fine silt was composed of detrital particles derived from bedrocks, Asian dust sediments, and their weathering products. Clay minerals of 2:1 structural type, chlorite, amphibole, epidote, and Ca-bearing plagioclase were identified as eolian mineral particles. During the weathering of the bedrock composed of quartz and alkali feldspars, albite was partially weathered to produce small amounts of gibbsite and kaolin minerals. Hydroxy-Al interlayered clay minerals were formed by the exchange and fixation of polynuclear Al cationic species into the interlayers of expandable 2:1 clay minerals dominated by illite-smectite series clay minerals. Contribution of Asian dust to the fine silt of soils was estimated around 70% on the basis of total contents of 2:1 phyllosilicates.

한반도는 황사의 이동 경로에 있으나, 풍화와 침식이 활발한 산악 지형에서 황사의 퇴적을 확인하기는 어렵다. 이 연구에서는 설악산 알칼리장석화강암 토양의 세립실트(< 20 ㎛)에 점토광물 특성, 광물조성, 미세조직 분석을 실시하여 산악지역 토양 내 황사퇴적물의 존재 상태를 조사하였다. 이 지역 토양 세립실트는 기반암 유래 쇄설성 입자, 황사퇴적물, 그리고 이들의 풍화물로 구성되어 있다. 토양 내 황사기원 광물로 2:1 층상규산염, 녹니석, 각섬석, 녹염석, 함칼슘사장석이 확인되었다. 기반암인 알칼리장석화강암은 석영과 알칼리장석으로 구성되며, 알칼리장석 중 앨바이트가 부분적으로 풍화되어 소량의 깁사이트와 고령토 광물이 생성되었다. 산성토양환경에서 일라이트-스멕타이트 계열 2:1 층상규산염의 팽윤성 층간에 다핵 Al 양이온 종들이 교환 및 고정되어 히드록시-Al삽입점토광물이 생성되었다. 2:1 층상규산염 총량을 기준으로 평가하면 조사한 토양 세립실트 내 황사의 양은 70% 정도로 추정된다.

Keywords

Acknowledgement

이 연구는 한국연구재단과제 NRF-2020R1H1A2014791의 지원을 받아 수행되었다. 원고의 미비점을 지적하여 주신 익명의 심사위원님들께 감사드립니다.

References

  1. Banhisel, R.I. and Bertsch, P.M., 1989, Chlorites and hydroxyinterlayered vermiculite and smectite. In Minerals in Soil Environment (eds. Dixon, J.B. and Weed, S.B.), Soil Science Society of America, Madison, 729-788.
  2. Georgiadis, A., Dietel, J., Dohrmann, R. and Rennert, T., 2020, What are the nature and formation conditions of hydroxy-interlayered minerals (HIMs) in soil? Journal of Plant Nutrition and Soil Science, 183, 12-26. https://doi.org/10.1002/jpln.201900283
  3. Jackson, M.L., 1962, Interlayering of expansible layer silicates in soils by chemical weathering. Clay and Clay Minerals, 11, 29-46. https://doi.org/10.1346/CCMN.1962.0110104
  4. Jeong, G.Y., 2008, Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. Journal of Geophysical Research-Atmosphere, 113, D02208, doi:10.1029/2007JD008606.
  5. Jeong, G.Y., 2020, Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air. Atmospheric Chemistry and Physics, 20, 7411-7428 https://doi.org/10.5194/acp-20-7411-2020
  6. Jeong, G.Y. and Achterberg, E.P., 2014, Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmospheric Chemistry and Physics, 14, 12415-12428. https://doi.org/10.5194/acp-14-12415-2014
  7. Jeong, G.Y. and Nousiainen, T., 2014, TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmospheric Chemistry and Physics, 14, 7233-7254. https://doi.org/10.5194/acp-14-7233-2014
  8. Jeong, G.Y., Hillier, S. and Kemp, R.A., 2008, Quantitative bulk and single-particle mineralogy of a thick Chinese loesspaleosol section: implications for loess provenance and weathering. Quaternary Science Reviews, 37, 1271-1287.
  9. Jeong, G.Y., Hillier, S. and Kemp, R.A., 2011, Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau. Quaternary Research, 75, 245-255. https://doi.org/10.1016/j.yqres.2010.09.001
  10. Jeong, G.Y., Choi, J.H., Lim, H.S., Seong, C.T. and Yi, S.B., 2013, Deposition and weathering of Asian dust in Paleolithic sites, Korea. Quaternary Science Reviews, 78, 283-300. https://doi.org/10.1016/j.quascirev.2013.08.002
  11. Jeong, G.Y., Kim, J.Y., Seo, J., Kim, G.M., Jin, H.C. and Chun, Y., 2014, Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmospheric Chemistry and Physics, 14, 505-521. https://doi.org/10.5194/acp-14-505-2014
  12. Jo, H.-Y., Park, M.Y., and Jeong, G.Y., 2019, Mineralogy, geochemistry, and eolian source of mountain soils on quartzite. Journal of the Geological Society of Korea, 55, 87-103. https://doi.org/10.14770/jgsk.2019.55.1.87
  13. Kee, W.-S., Kim, H., Kim, B.C., Choi, S.-J., Park, S.-I. and Hwang, S.K., 2010, Geological Report of the Seoraksan Sheet. Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea, 94p.
  14. Kim, J.C., Lee, Y.I., Lim, H.S. and Yi, S., 2011, Geochemistry of Quaternary sediments of the Jeongokri archaeological site, Korea: Implications for provenance and palaeoenvironments during the Late Pleistocene. Journal of Quaternary Science, 27, 260-268. https://doi.org/10.1002/jqs.1540
  15. Kim, Y.B., 2010, Geological Report of the Changamjeom Sheet. Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea, 80p.
  16. Kukla, G. and An., Z., 1989, Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 72, 203-225. https://doi.org/10.1016/0031-0182(89)90143-0
  17. Kwak, T.H. and Jeong, G.Y., 2017, Mineralogical and geochemical properties of clay-silt sediments exposed in Jangdongri, Naju, Korea. Journal of the Mineralogical Society of Korea, 30, 11-19. https://doi.org/10.9727/jmsk.2016.30.1.11
  18. Park, M.Y. and Jeong, G.Y., 2016, Mineralogical properties of Asian dust sampled at Deokjeok Island, Incheon, Korea in February 22, 2015. Journal of the Mineralogical Society of Korea, 29, 79-87. https://doi.org/10.9727/jmsk.2016.29.2.79
  19. Shin, J.-B., Naruse, T. and Yu, K.-M., 2005, The application of loess-paleosol deposits on the development age of river terraces at the midstream of Hongcheon River. Journal of the Geological Society of Korea, 41, 323-333.
  20. Song, K.-Y., Park, S.-I. and Cho, D.-L., 2011, Geological Report of the Sokcho-Yangyang Sheet. Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea, 81p.
  21. Viennet, J.-C., Hubert, F., Tertre, E., Ferrage, E., Robin, V., Dzene, L., Cochet, C. and Turpault, M.-P., 2016, Effect of particle size on the experimental dissolution and auto-aluminization processes of K-vermiculite. Geochimica et Cosmochimica Acta, 180, 164-176. https://doi.org/10.1016/j.gca.2016.02.005
  22. Yoon, S., Park, C.-S. and Hwang, S., 2011, Geochemical properties of loess-paleosol sequence in the Haemi area, Seosan, Chungnam Province, South Korea. Journal of the Geological Society of Korea, 47, 343-362.
  23. Yu, K.-M., Shin, J.-B. and Naruse, T., 2008, Loess-paleosol stratigraphy of Dukso area, Namyangju City, Korea (South). Quaternary International, 176-177, 96-103. https://doi.org/10.1016/j.quaint.2007.05.007