DOI QR코드

DOI QR Code

기능적 근적외선 분광법(fNIRS)을 이용한 우세손에 따른 뇌 활성화도에 대한 융합 연구

Convergence Study of Brain Activity by Dominant Hand Using functional near-infrared spectroscopy(fNIRS)

  • 김미경 (연세대학교 일반대학원 작업치료학과) ;
  • 박선하 (연세대학교 일반대학원 작업치료학과) ;
  • 박혜연 (연세대학교 소프트웨어디지털헬스케어융합대학 작업치료학과)
  • Kim, Mi Kyeong (Dept. of Occupational Therapy, Graduate School of Yonsei University) ;
  • Park, Sun Ha (Dept. of Occupational Therapy, Graduate School of Yonsei University) ;
  • Park, Hae Yean (Dept. of Occupational Therapy, College of Software and Digital Healthcare Convergence, Yonsei University)
  • 투고 : 2021.09.13
  • 심사 : 2021.12.20
  • 발행 : 2021.12.28

초록

본 연구에서는 10명의 건강한 성인을 대상으로 기능적 근적외선 분광법(fNIRS)을 이용하여 우세손과 비우세손에 따른 뇌 활성화도의 차이를 알아보고자 하였다. 우세손, 비우세손 총 2가지 조건에서 상자와 나무토막검사(BBT)를 실시하였다. 실험을 진행하는 동안 fNIRS을 이용하여 뇌 활성도를 측정하였으며, 실험이 종료된 후 nirsLAB v2019.04 소프트웨어를 사용하여 신호를 분석하였다. 그 결과 우세손을 사용한 경우 10명 중 6명이 우세손과 관련 있는 대뇌반구의 활성화를 보였고, 비우세손을 사용한 경우는 10명 중 3명만이 비우세손과 관련 있는 대뇌반구의 활성화를 보였다. 즉, 우세손, 비우세손 모두 우세손과 관련 있는 대뇌반구가 좀 더 활성화되었음을 확인하였다. 따라서 우세손을 알기 어려운 감각처리장애를 가진 아동들에게 fNIRS을 적용할 수 있는 기초적 자료로 사용될 수 있으리라 사료된다.

In this study, we intended to examine the difference in brain activation due to dominant and non-dominant hands using functional near-infrared spectroscopy(fNIRS) in 10 healthy adults. Box & Block Test(BBT) was conducted under two conditions: dominant hand and non-dominant hand. During the experiment, brain activity was measured using fNIRS and signals were analyzed using nirsLAB v2019.04 software after the experiment was completed. As a result, 6 out of 10 people showed activation of the cerebral hemisphere related to the dominant hand, and only 3 out of 10 people showed activation of the cerebral hemisphere related to the non-dominant hand. In other words, both dominant and non-dominant hand cconfirmed that the cerebral hemispheres related to dominant hands were more active. Therefore, it is believed that fNIRS can be used as a fundamental data applicable to children with sensory processing disorders that are difficult to identify dominant hand.

키워드

참고문헌

  1. J. Desrosiers, G. Bravo, R. Hebert, E. Dutil & L. Mercier. (1994). Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Archives of physical medicine and rehabilitation, 75(7), 751-755. DOI : 10.1016/0003-9993(94)90130-9
  2. N. Kamakura, M. Matsuo, H. Ishii, F. Mitsuboshi & Miura, Y. (1980). Patterns of static prehension in normal hands. American Journal of Occupational Therapy, 34(7), 437-445. DOI : 10.5014/ajot.34.7.437
  3. V. H. Frankel. (1973). Biomechanics of the musculoskeletal system. Introduction. Archives of Surgery, 107(3), 405. https://doi.org/10.1001/archsurg.1973.01350210041013
  4. Y. H. Shin, I. Chyang, & H. Y. Kang. (2014). A comparison of bone maturation between dominant hand and non-dominant hand of boys in childhood by means of Tanner-Whitehouse 3(TW3) method. Korean Journal of Sports Science, 23(3), 1459-1466.
  5. J. H. Lee, H. S. Han, & E. S. Lee. (2010). A Comparison of Linguistic and Spatial Ability in Left- and Right-handed Young Children. Korean Journal of Human Ecology, 19(4), 601-612. https://doi.org/10.5934/KJHE.2010.19.4.601
  6. S. H. Kim. (2012.02.10.). Monitoring and tasks such as left-handed writing inconvenience. Seoul : Korea Educational Development Institute.
  7. J. Downing & D. Thackray. (1971). Reading readiness: University of London Press for the United Kingdom Reading Association.
  8. T. R. Lord. (1986). Right-handed and left-footed? How andera learned to question the facts. Science and children, 24(2), 22-25.
  9. J. Herron. (1976). Southpaws how different are they. Psychology today, 9(10), 50-56.
  10. R. C. Oldfield. (1071). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia, 9, 97-114. https://doi.org/10.1016/0028-3932(71)90067-4
  11. Y. Ellen, A. Paula & S. Shirley. (2018). Building Bridges Through Sensory Integration Third Edition. Seoul : Gyechuk Munhwasa.
  12. G. T. Baranek. (2002). Efficacy of sensory and motor interventions for children with autism. Journal of autism and developmental disorders, 32(5), 397-422. https://doi.org/10.1023/A:1020541906063
  13. J. H. Lee, Y. S. Bang & E. S. Ju. (2018). The Influence of Sensory Integration Program on the Stereotypic Behavior of Children with Autistic Spectrum Disorder- Comparison between Tactile and Vestibular Proprioceptive Sensory Activities. Journal of the Korea Entertainment Industry Association, 12(7), 339-351. https://doi.org/10.21184/jkeia.2018.10.12.7.339
  14. H. G. Shin, S. B. Lee, B. H. Lee, K. M. Lee, & E. K. Kim. (2014). Students with Autism Spectrum Disorders: Effective Instructional Practices, Seoul : Sigma Press.
  15. S. H. Lee, S. H. Jin, Berdakh Abibullaev, J. U. An, & J. I. Moon. (2012). Upper Limb Rehabilitation Robotic System Framework Design based Recognition of User Intention using fNIRS. The HCI Society of Korea, 26-28.
  16. K. Izzetoglu, G. Yurtsever, A. Bozkurt, & S. Bunce. (2003). Functional brain monitoring via NIR based optical spectroscopy. In 2003 IEEE 29th Annual Proceedings of Bioengineering Conference, 335-336.
  17. F. S. Cromwell. (1976). Occupational therapist manual for basic skill assessment: Primary pre-vocational evaluation. Altadena, CA: Fair Oaks Printing.
  18. F. S. Cromwell. (1965). Occupational therapist manual for basic skill assessment: Primary pre-vocational evaluation. Pasadena, CA: Fair Oaks Printing Co.
  19. S. M. Lee. (2016). Comparison of Upper and Lower Limb Functional Ability Depends on Dominants. Journal of Korean Clinical Health Science, 4(3), 622-633. DOI : 10.15205 https://doi.org/10.15205/KSCHS.2016.9.30.622
  20. N. Kuboyama, T. Nabetani, K. Shibuya, K. Machida, & T. Oqaki. (2004). The effect of maximal finger tapping on cerebral activation. Journal of Physiological anthropology and applied human science, 24(4), 105-110.
  21. nirsLAB Manual. NewYork : SUNY Downstate Medical Center, Optical Tomography Group.
  22. C. F. Lu, Y. C. Liu, Y. R. Yang, Y. T. Wu, & R. Y. Wang. (2015). Maintaining gait performance by cortical activation during dual-task interference: a functional near-infrared spectroscopy study. PloS one, 10(6), e0129390. https://doi.org/10.1371/journal.pone.0129390
  23. G. A. Z., Morais, F. Scholkmann, J. B. Balardin, R. A. Furucho, R. C. V. de Paula, C. E. Biazoli, & J. R. Sato. (2017). Non-neuronal evoked and spontaneous hemodynamic changes in the anterior temporal region of the human head may lead to misinterpretations of functional near-infrared spectroscopy signals. Neurophotonics, 5(1), 011002.
  24. J. Schack, A. H. Pripp, P. Mirtaheri, H. Steen, E. Guler, & T. Gjovaag. (2020). Increased prefrontal cortical activation during challenging walking conditions in persons with lower limb amputation -an fNIRS observational study. Physiotherapy theory and practice, 1-11.
  25. G. Strangman, D. A. Boas & J. P. Sutton. (2002). Non-invasive neuroimaging using nearinfrared light. Biological Psychiatry 52, 679-693. https://doi.org/10.1016/S0006-3223(02)01550-0
  26. J. H. Kim & W. M. Jeong. (2004). Normative data for box and block test: normal elementary school children. The Journal of Korean Society of Occupational Therapy, 12(1), 55-68.
  27. P. Pinti, C. Aichelburg, F. Lind, S. Power, E. Swingler, A. Merla, ... & I. Tachtsidis. (2015). Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks. Journal of visualized experiments: JoVE, (106). DOI : 10.3791/53336
  28. S. H. Jin, S. H. Lee, S, S. T. Yang, & J. An. (2020). Hemispheric asymmetry in hand preference of right-handers for passive vibrotactile perception: an fNIRS study. Scientific reports, 10(1), 1-10. https://doi.org/10.1038/s41598-019-56847-4