DOI QR코드

DOI QR Code

Hair growth promoting effect of toothpaste in C57BL/6 mice: Active components and their effects on genomic expression

C57BL/6 마우스에서 치약의 모발성장 촉진 효과: 유효 성분과 유전체 발현에 미치는 영향

  • Ahn, Seunghyun (Department of Applied chemistry and Cosmetics, Dongduk Women's University) ;
  • Lee, Jung Yeon (Department of Applied chemistry and Cosmetics, Dongduk Women's University) ;
  • Shin, Yujeong (Department of Applied chemistry and Cosmetics, Dongduk Women's University) ;
  • Lee, Jinkyung (Department of Health and Cosmetics, Dongduk Women's University) ;
  • Lee, Seol-Hoon (Department of Applied chemistry and Cosmetics, Dongduk Women's University) ;
  • Park, Seyeon (Department of Applied chemistry and Cosmetics, Dongduk Women's University)
  • Received : 2021.10.13
  • Accepted : 2021.11.15
  • Published : 2021.12.31

Abstract

It has been suggested that some toothpastes have the potential to promote hair growth. However, there was no scientific verification on the hair growth effect of toothpaste and no scientific report on major active ingredients in toothpaste. In this work, toothpaste and its constituents were applied topically over the shaved skin of C57BL/6 mice and evaluated. Results indicated that toothpaste showed hair growth effect. Also, the effect of toothpaste constituents on the proliferation rate of keratinocyte cells was investigated. The mixture solution of 𝛼-tocopherol acetate, l-menthol, and stevioside, each of that was known to promote hair growth and other toothpaste constituents were applied topically on mouse skin. When the mixture solution was included, hair growth effect was observed in mice. Transcriptome analysis was performed using the dorsal epidermis of mice from the group treated with toothpaste, the mixture which are presumed to be active ingredients for hair growth, and from mice used for the control group. As a result of analyzing the genes whose expression was significantly changed in each treatment group, the gene patterns of the two groups were very similar. Also, when functional genomic analysis was performed, genes with functions related to hair growth regulation showed a high extent of the change in both groups. Hair growth-related genes whose expression was changed in both groups included keratin, keratin-related proteins, forkhead box, and sonic hedgehog. Therefore, the hair growth effect of toothpaste is thought to be due to the effect of a mixture of 𝛼-tocopherol acetate, l-menthol, and stevioside.

예전부터 치약이 모발성장을 촉진시킬 수 있는 잠재력을 갖고 있다고 제안되어 왔지만 발모효과에 대한 과학적 검증과 치약 내 주요 활성성분에 대한 연구는 보고된 바가 없다. 따라서 본 연구에서는 치약을 이용하여 피부 각질세포의 성장 및 C57BL/6 마우스의 제모된 등쪽 피부에 국소적으로 적용하여 모발의 성장 촉진 여부를 평가하였다. 본 연구 결과 치약의 구성 성분으로서 문헌에서 발모 효과가 있다고 알려진 𝛼-tocopherol acetate와 l-menthol, stevioside 혼합액과, 이들을 제외한 치약 조성 성분들의 혼합액을 각각 두 그룹의 C57BL/6 마우스의 제모된 피부에 국소적으로 적용한 경우, 치약 성분의 혼합액은 발모효과를 보이지 않았고, 𝛼-tocopherol acetate과 l-menthol, stevioside 혼합액이 포함되었을 경우에는 마우스에서 발모 효과가 나타났다. 따라서, 치약을 구성하는 보조성분들인 α-tocopherol acetate과 l-menthol, stevioside 혼합물은 in vivo에서의 모발성장에 있어 잠재력을 갖고 있음을 확인하였다. 또한 치약을 처리한 그룹의 마우스와 발모 유효 성분으로 추정되는 𝛼-tocopherol acetate과 l-menthol, stevioside를 혼합 처리한 그룹의 마우스, 그리고 대조군의 마우스의 등쪽 표피를 취하여 전사체 분석을 진행한 결과 대조군에 비해서 각각의 처리군에서 유의적으로 발현된 유전자 패턴은 매우 유사함을 보였다. 또한 기능유전체적 분석을 하였을 때, 두 그룹에서 공통적으로 발모 조절 관련 기능의 유전자들이 매우 큰 비율의 변화를 보였다. 두 그룹에서 발현이 변화한 발모관련 유전자들로는 케라틴과 케라틴 관련 단백질, forkhead box, sonic hedgehog 등이 관찰되었다. 따라서, 치약의 발모 효과는 𝛼-tocopherol acetate과 l-menthol, stevioside 혼합물의 효과에 기인하는 것으로 생각된다.

Keywords

Acknowledgement

본 논문은 과학기술정보통신부 개인기초연구(과기정통부)(R&D)2019R1F1A1043896 과 중소벤처기업부 지역특화산업육성+(R&D) S2913492의 지원을 받아 수행되었습니다.

References

  1. Hosking AM, Juhasz M, Atanaskova Mesinkovska N (2019) Complementary and Alternative Treatments for Alopecia: A Comprehensive Review. Skin Appendage Disord 5: 72-89. doi:10.1159/000492035
  2. Beoy LA, Woei WJ, Hay YK (2010) Effects of tocotrienol supplementation on hair growth in human volunteers. Trop Life Sci Res 21: 91-99
  3. Oh JY, Park MA, Kim YC (2014) Peppermint Oil Promotes Hair Growth without Toxic Signs. Toxicol Res 30: 297-304. doi:10.5487/TR.2014.30.4.297
  4. Goralczyk (RB C, Graeub, Remo (Basel, CH), Mayne0mechan, Annis Olivia (Basel, CH), Mohajeri, Hasan (Basel, CH), Piussi, Jenny (Basel, CH), Rieger, Henry (Basel, CH), inventor; DSM NUTRITIONAL PRODUCTS LTD. (Kaiseraugst, NL), assignee (2013) TOPICAL USE OF STEVIOL OR DERIVATIVES IN HAIR CARE, United States
  5. Muller-Rover S, Handjiski B, van der Veen C, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117: 3-15. doi:10.1046/j.0022-202x.2001.01377.x
  6. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359. doi:10.1038/nmeth.1923
  7. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841-842. doi:10.1093/bioinformatics/btq033
  8. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80. doi:10.1186/gb-2004-5-10-r80
  9. Yang CC, Cotsarelis G (2010) Review of hair follicle dermal cells. J Dermatol Sci 57: 2-11. doi:10.1016/j.jdermsci.2009.11.005
  10. Ohn J, Kim KH, Kwon O (2019) Evaluating hair growth promoting effects of candidate substance: A review of research methods. J Dermatol Sci 93: 144-149. doi:10.1016/j.jdermsci.2019.02.004
  11. Sennett R, Rendl M (2012) Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 23: 917-927. doi:10.1016/j.semcdb.2012.08.011
  12. Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81: 449-494. doi:10.1152/physrev.2001.81.1.449
  13. Su YS, Fan ZX, Xiao SE, Lin BJ, Miao Y, Hu ZQ, Liu H (2017) Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells. Clin Exp Dermatol 42: 287-294. doi:10.1111/ced.13043
  14. Paus R, Foitzik K (2004) In search of the "hair cycle clock": a guided tour. Differentiation 72: 489-511. doi:10.1111/j.1432-0436.2004.07209004.x
  15. Chi W, Wu E, Morgan BA (2013) Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140: 1676-1683. doi:10.1242/dev.090662
  16. Elliott K, Stephenson TJ, Messenger AG (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol 113: 873-877. doi : 10.1046/j.1523-1747.1999.00797.x