DOI QR코드

DOI QR Code

Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice

  • Kim, Jin Kyeong (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Shin, Kon Kuk (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Kim, Haeyeop (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Hong, Yo Han (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Choi, Wooram (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Kwak, Yi-Seong (R&D Headquarters, Korea Ginseng Corporation) ;
  • Han, Chang-Kyun (R&D Headquarters, Korea Ginseng Corporation) ;
  • Hyun, Sun Hee (R&D Headquarters, Korea Ginseng Corporation) ;
  • Cho, Jae Youl (Department of Integrative Biotechnology, Sungkyunkwan University)
  • 투고 : 2021.02.10
  • 심사 : 2021.03.30
  • 발행 : 2021.11.15

초록

Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)- α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.

키워드

과제정보

This research was funded by the Korean society of ginseng (KSG) (2020) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF), Korea, the Ministry of Science and ICT, Republic of Korea (Grant No.: 2017R1A6A1A03015642).

참고문헌

  1. McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Annals of the New York Academy of Sciences 2004;1035:104-16. https://doi.org/10.1196/annals.1332.007
  2. Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis. Osteoarthritis and Cartilage 2015;23:1966-71. https://doi.org/10.1016/j.joca.2015.01.008
  3. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Su Kerr, Culliford D, Perry V. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009;73:768-74. https://doi.org/10.1212/wnl.0b013e3181b6bb95
  4. Sarkar D, Fisher PB. Molecular mechanisms of aging-associated inflammation. Cancer Letters 2006;236:13-23. https://doi.org/10.1016/j.canlet.2005.04.009
  5. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F. Proinflammatory cytokines, aging, and age-related diseases. Journal of the American Medical Directors Association 2013;14:877-82. https://doi.org/10.1016/j.jamda.2013.05.009
  6. Brunet A, Berger SL. Epigenetics of aging and aging-related disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 2014;69:S17-20. https://doi.org/10.1093/gerona/glu042
  7. Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell 2010;9:285-90. https://doi.org/10.1111/j.1474-9726.2010.00548.x
  8. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011;146:682-95. https://doi.org/10.1016/j.cell.2011.07.030
  9. Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nature Medicine 2008;14:959-65. https://doi.org/10.1038/nm.1851
  10. Cheon SY, Kim H, Rubinsztein DC, Lee JE. Autophagy, cellular aging and Age-related human diseases. Experimental Neurobiology 2019;28:643. https://doi.org/10.5607/en.2019.28.6.643
  11. Martinez-Lopez N, Athonvarangkul D, Singh R. Autophagy and aging. Longevity Genes 2015:73-87.
  12. Jiang M, Liu K, Luo J, Dong Z. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. The American Journal of Pathology 2010;176:1181-92. https://doi.org/10.2353/ajpath.2010.090594
  13. Lenoir O, Tharaux P-L, Huber TB. Autophagy in kidney disease and aging: lessons from rodent models. Kidney International 2016;90:950-64. https://doi.org/10.1016/j.kint.2016.04.014
  14. Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Current Topics in Developmental Biology 2006;73:205-35. https://doi.org/10.1016/S0070-2153(05)73007-6
  15. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Research 2014;24:92-104. https://doi.org/10.1038/cr.2013.153
  16. Yun TK. Brief introduction of Panax ginseng CA Meyer. Journal of Korean Medical Science 2001;16:S3. https://doi.org/10.3346/jkms.2001.16.s.s3
  17. Lee SM, Bae B-S, Park H-W, Ahn N-G, Cho B-G, Cho Y-L, Kwak Y-S. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. Journal of Ginseng Research 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  18. Lee DC, Lau AS. Effects of Panax ginseng on tumor necrosis factor-a-mediated inflammation: a mini-review. Molecules 2011;16:2802-16. https://doi.org/10.3390/molecules16042802
  19. Yoo H-S, Kim JM, Jo E, Cho C-K, Lee S-Y, Kang HS, Lee M-G, Yang P-Y, Jang I-S. Modified Panax ginseng extract regulates autophagy by AMPK signaling in A549 human lung cancer cells. Oncology Reports 2017;37:3287-96. https://doi.org/10.3892/or.2017.5590
  20. Qomaladewi NP, Kim M-Y, Cho JY. Autophagy and its regulation by ginseng components. Journal of Ginseng Research 2019;43:349-53. https://doi.org/10.1016/j.jgr.2018.12.011
  21. Kim JH, Yi Y-S, Kim M-Y, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. Journal of Ginseng Research 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  22. Lee J-I, Park KS, Cho I-H. Panax ginseng: a candidate herbal medicine for autoimmune disease. Journal of Ginseng Research 2019;43:342-8. https://doi.org/10.1016/j.jgr.2018.10.002
  23. Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E. Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging and Disease 2019;10:367. https://doi.org/10.14336/AD.2018.0324
  24. Ren J, Zhang Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends in Pharmacological Sciences 2018;39:1064-76. https://doi.org/10.1016/j.tips.2018.10.005
  25. Lee J, Park J, Lee YY, Lee Y. Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice. J Ginseng Res 2020;44:519-26. https://doi.org/10.1016/j.jgr.2020.01.008
  26. Park JG, Son YJ, Aravinthan A, Kim JH, Cho JY. Korean Red Ginseng water extract arrests growth of xenografted lymphoma cells. J Ginseng Res 2016;40:431-6. https://doi.org/10.1016/j.jgr.2016.07.006
  27. Kim JH, Park JG, Hong YH, Shin KK, Kim JK, Kim YD, Yoon KD, Kim KH, Yoo BC, Sung GH, et al. Sauropus brevipes ethanol extract negatively regulates inflammatory responses in vivo and in vitro by targeting Src, Syk and IRAK1. Pharm Biol 2021;59:74-86. https://doi.org/10.1080/13880209.2020.1866024
  28. Park SH, Oh J, Jo M, Kim JK, Kim DS, Kim HG, Yoon K, Yang Y, Geum JH, Kim JE, et al. Water extract of Lotus leaf alleviates dexamethasone-induced muscle atrophy via regulating protein metabolism-related pathways in mice. Molecules 2020;25.
  29. Zhu X, Shen J, Feng S, Huang C, Liu Z, Sun YE, Liu H. Metformin improves cognition of aged mice by promoting cerebral angiogenesis and neurogenesis. Aging (Albany NY) 2020;12:17845-62.
  30. Choi E, Kim E, Kim JH, Yoon K, Kim S, Lee J, Cho JY. AKT1-targeted proapoptotic activity of compound K in human breast cancer cells. Journal of Ginseng Research 2019;43:692-8. https://doi.org/10.1016/j.jgr.2019.07.001
  31. Han SY, Yi Y-S, Jeong S-G, Hong YH, Choi KJ, Hossain MA, Hwang H, Rho HS, Lee J, Kim J-H. Ethanol extract of lilium bulbs plays an anti-inflammatory role by targeting the IKK a/b-Mediated NF-k B pathway in macrophages. The American Journal of Chinese Medicine 2018;46:1281-96. https://doi.org/10.1142/S0192415X18500672
  32. Morley JE, Baumgartner RN. Cytokine-related aging process. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2004;59:M924-9. https://doi.org/10.1093/gerona/59.9.M924
  33. Bruunsgaard H, Pedersen M, Pedersen BK. Aging and proinflammatory cytokines. Current Opinion in Hematology 2001;8:131-6. https://doi.org/10.1097/00062752-200105000-00001
  34. Cho SJ, Stout-Delgado HW. Aging and lung disease. Annual Review of Physiology 2020;82:433-59. https://doi.org/10.1146/annurev-physiol-021119-034610
  35. Hunto ST, Kim HG, Baek K-S, Jeong D, Kim E, Kim JH, Cho JY. Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF-κB pathway. Biochemical Pharmacology 2020;177:113949. https://doi.org/10.1016/j.bcp.2020.113949
  36. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metabolism 2016;23:1060-5. https://doi.org/10.1016/j.cmet.2016.05.011
  37. Nitta K, Okada K, Yanai M, Takahashi S. Aging and chronic kidney disease. Kidney and Blood Pressure Research 2013;38:109-20. https://doi.org/10.1159/000355760
  38. Kim H, Kisseleva T, Brenner DA. Aging and liver disease. Current Opinion in Gastroenterology 2015;31:184. https://doi.org/10.1097/mog.0000000000000176
  39. Sonnenberg A, Genta RM. Changes in the gastric mucosa with aging. Clinical Gastroenterology and Hepatology 2015;13:2276-81. https://doi.org/10.1016/j.cgh.2015.02.020
  40. Motilva V, Garcia-Maurino S, Talero E, Illanes M. New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. Journal of Pineal Research 2011;51:44-60. https://doi.org/10.1111/j.1600-079X.2011.00915.x
  41. Cao S, Zhang X, Edwards JP, Mosser DM. NF-κB1 (p50) homodimers differentially regulate pro-and anti-inflammatory cytokines in macrophages. Journal of Biological Chemistry 2006;281:26041-50. https://doi.org/10.1074/jbc.M602222200
  42. Jedinak A, Dudhgaonkar S, Wu Q-l, Simon J, Sliva D. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling. Nutrition Journal 2011;10:1-10. https://doi.org/10.1186/1475-2891-10-1
  43. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2017;2:1-9.
  44. Baeuerle PA, Baichwal VR. NF-κB as a frequent target for immunosuppressive and anti-inflammatory molecules. Advances in Immunology 1997;65:111-38. https://doi.org/10.1016/S0065-2776(08)60742-7
  45. Schonthaler HB, Guinea-Viniegra J, Wagner EF. Targeting inflammation by modulating the Jun/AP-1 pathway. Annals of the Rheumatic Diseases 2011;70:i109-12.
  46. Matthews CP, Colburn NH, Young MR. AP-1 a target for cancer prevention. Current Cancer Drug Targets 2007;7:317-24. https://doi.org/10.2174/156800907780809723
  47. Kimura T, Isaka Y, Yoshimori T. Autophagy and kidney inflammation. Autophagy 2017;13:997-1003. https://doi.org/10.1080/15548627.2017.1309485
  48. Omata Y, Lim Y-M, Akao Y, Tsuda L. Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer's disease. American Journal of Neurodegenerative Disease 2014;3:134.
  49. Arakawa S, Honda S, Yamaguchi H, Shimizu S. Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proceedings of the Japan Academy, Series B 2017;93:378-85. https://doi.org/10.2183/pjab.93.023
  50. Mai S, Muster B, Bereiter-Hahn J, Jendrach M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012;8:47-62. https://doi.org/10.4161/auto.8.1.18174
  51. Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM. LC3/GABARAP family proteins: autophagy-(un) related functions. The FASEB Journal 2016;30:3961-78. https://doi.org/10.1096/fj.201600698R
  52. Ryter SW, Choi AM. Autophagy in the lung. Proceedings of the American Thoracic Society 2010;7:13-21. https://doi.org/10.1513/pats.200909-101JS
  53. Wang JH, Ahn IS, Fischer TD, Byeon JI, Dunn Jr WA, Behrns KE, Leeuwenburgh C, Kim JS. Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology 2011;141:2188-99. e2186. https://doi.org/10.1053/j.gastro.2011.08.005
  54. Chang W, Bai J, Tian S, Ma M, Li W, Yin Y, Deng R, Cui J, Li J, Wang G. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway. Experimental Biology and Medicine 2017;242:1025-33. https://doi.org/10.1177/1535370216686221
  55. Schroeder S, Zimmermann A, Carmona-Gutierrez D, Eisenberg T, Ruckenstuhl C, Andryushkova A, Pendl T, Harger A, Madeo F. Metabolites in aging and autophagy. Microbial Cell 2014;1:110. https://doi.org/10.15698/mic2014.04.142