DOI QR코드

DOI QR Code

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Navi, Borhan Rousta (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2019.07.13
  • Accepted : 2021.10.19
  • Published : 2021.12.25

Abstract

In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support, Iranian National Science Foundation (INSF) and the University of Kashan for supporting this work. Also, they thank a lot for Mr. Mojtaba Mehrabi to help us in the revised manuscript.

References

  1. Arefi, M. and Zenkour A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. http://dx.doi.org/10.12989/scs.2018.26.4.421.
  2. Arunkumar, M.P., Pitchaimani, J., Gangadharan, K.V. and Lenin Babu. M.C. (2017), "Sound transmission loss characteristics of sandwich aircraft panels: influence of nature of core", J. Sandwich Struct. Mater., 19(1), 26-48 . https://doi.org/10.1177/1099636216652580.
  3. Aslund, P.E., Hagglund, R., Carlsson, L.A. and P. Isaksson, (2014), "Modeling of global and local buckling of corrugated board panels loaded in edge-to-edge compression", J. Sandwich Struct. Mater., 16(3), 272-292. https://doi.org/10.1177/1099636213519374.
  4. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Walled Struct., 107, 39. https://doi.org/10.1016/j.tws.2016.05.025.
  5. Chen, Q., Linghu, T., Gao, Y., Wang, Z., Liu, Y., Du, R. and Zhao, G. (2017), "Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing", Compos. Sci. Technol., 144, 202-207. https://doi.org/10.1016/j.compscitech.2017.03.033.
  6. D'Ottavio, M., Ji, O.W.P. and Waas, A.M. (2016), "Benchmark solutions and assessment of variable kinematics models for global and local buckling of sandwich struts", Compos. Struct., 156, 125-134. https://doi.org/10.1016/j.compstruct.2016.01.019.
  7. Damanpack, A.R., Khalilik, S.M.R. (2012), High- order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct., 94, 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023.
  8. Ebrahimi, F. and Jafari, A. (2016), "Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory", Advan. Mater. Res., 5(4), 279-298. https://doi.org/10.12989/amr.2016.5.4.279.
  9. Ferdous, W., Manalo, A., Aravinthan, T. and Fan, A. (2018), "Flexural and shear behaviour of layered sandwich beams", Constuct. Build. Mater., 173, 429-442. https://doi.org/10.1016/j.conbuildmat.2018.04.068.
  10. Filippi, M. and Carrera, E. (2016), "Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory", Compos. Part B, 98, 269-280 . https://doi.org/10.1016/j.compositesb.2016.04.050.
  11. Frostig, Y. (2016), "Shear buckling of sandwich plates - incompressible and compressible cores", Compos. Part B, 96, 153- 172. https://doi.org/10.1016/j.compositesb.2016.04.037.
  12. Frostig, Y., Phan, C. and Kardomateas, G. (2013), "Free vibration of unidirectional sandwich panels, Part I: compressible core", J. Sandwich Struct. Mater., 15(4), 377-411. https://doi.org/10.1177/1099636213485518.
  13. Ghorbanpour Arani, A., BabaAkbar Zarei H. and Haghparast, E. (2016), "Application of Halpin-Tsai method in modelling and sizedependent vibration analysis of CNTs/fiber/polymer composite microplates", J. Comput. Appl. Mech., 47, 45-52. https://doi.org/10.22059/jcamech.2016.59254.
  14. Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2017). "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field", J. Sandwich Struct. Mater., 2194-2218. https://doi.org/10.1177/1099636217743177.
  15. Ghorbanpour Arani, A., Haghparast E. and BabaAkbar Zarei, H. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., 57. https://doi.org/105-126. 10.12989/sem.2016.57.1.105.
  16. Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill, Inc. New York, NY.
  17. Goncalves, B.R., Karttunen, A., Romanoff, J. and Reddy, J.N. (2017), "Buckling and free vibration of shear-flexible sandwich beams using a couple stress- based finite element", Compos. Struct., 65, 233-241. https://doi.org/10.1016/j.compstruct.2017.01.033.
  18. Hwu, C., Hsu, H.W. and Lin, Y.H. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", Compos. Struct., 171, 528-537. https://doi.org/10.1016/j.compstruct.2017.03.042.
  19. Iurlaro, L., Gherlone, M., Di Sciuva, M. and Tessler, A. (2013), "Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories", Compos. Struct., 106, 777-792. https://doi.org/10.1016/j.compstruct.2013.07.019.
  20. Jalali, S.K. and Heshmati, M. (2016), "Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets", Thin-Wall. Struct., 100, 14-24. https://doi.org/10.1016/j.tws.2015.12.001.
  21. Javani, R., Rabani Bidgoli M. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. http://dx.doi.org/10.12989/scs.2019.31.4.419.
  22. Jiang, L., Feng, Y., Zhou, W. and He B. (2018), "Analysis on natural vibration characteristics of steel-concrete composite truss beam", Steel Compos. Struct., 26(1), 79-87. http://dx.doi.org/10.12989/scs.2018.26.1.079.
  23. Jin, G., Yang, C. and Liu, Z. (2016), "Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy's higher-order theory", Compos. Struct., 140, 390-409. https://doi.org/10.1016/j.compstruct.2016.01.017.
  24. Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B, 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.
  25. Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64, 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.
  26. Khaje Khabaz, M., Eftekhari, S.A., Hashemian, M., Toghraie, D. (2020), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Physica A: Stat. Mech. Appl., 546, 123998. https://doi.org/10.1016/j.physa.2019.123998.
  27. Kumar, R.S. and Ray, M.C. (2016), "Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1-3 piezoelectric composites", Mech. Advan. Mater. Struct., 23(6), 652-669. https://doi.org/10.1080/15376494.2015.1028692.
  28. Li, D.H., Wang, R.P., Qian, R.L., Liu, Y. and Qing, G.H. (2016), "Static response and free vibration analysis of the composite sandwich structures with multi-layer cores", Int. J. Mech. Sci., 111, 101-115. https://doi.org/10.1016/j.ijmecsci.2016.04.002.
  29. Lurie, S.A., Solyaev, Y.O., Volkov-Bogorodskiy, D.B., Bouznik, V.M. and Koshurina, A.A. (2017), "Design of the corrugated-core sandwich panel for the arctic rescue vehicle", Compos. Struct., 160, 1007-1019. https://doi.org/10.1016/j.compstruct.2016.10.123.
  30. Magnucka-Blandzi, E., Walczak, Z., Jasion, P. and Wittenbeck, L. (2017), "Buckling and vibrations of metal sandwich beams with trapezoidal corrugated cores - the lengthwise corrugated main core", Thin-Wall. Struct., 112, 78-82. https://doi.org/10.1016/j.tws.2016.12.013.
  31. MalekzadehFard, K., Gholami, M., Reshadi, F. and livani, M. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandwich Struct. Mater., 19(4), 397-423. https://doi.org/10.1177/1099636215603034.
  32. Mathieson, H., Fam, A. (2014), "High cycle fatigue under reversed bending of sandwich panels with GFRP skins and polyurethane foam core", Compos. Struct., 113, 31-39. https://doi.org/10.1016/j.compstruct.2014.02.027
  33. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Rabby, S. and Kazemi, M. (2018), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Cont., 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  34. Mirzaei, M. and Kiani, Y. (2015), "Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets", Compos. Struct., 134, 1004-1013. https://doi.org/10.1016/j.compstruct.2015.09.003.
  35. Mirzaei, M. and Kiani, Y. (2016), "Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", Acta Mech., 227(7), 1869-1884. https://doi.org/10.1007/s00707-016-1593-6.
  36. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.
  37. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007.
  38. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2017), "Dynamic stability of MSGT sinusoidal viscoelastic piezoelectric polymeric FG-SWNT reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermoelectro-magneto-mechanical loadings", Mech. Advan. Mater. Struct., 24, 1-19. https://doi.org/10.1080/15376494.2016.1227507.
  39. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016), "Bending and free vibration analysis of MSGT microcomposte vReddy plate reinforced by FG-CNTs with temperature-dependent material properties under hydro-thermo-mechanical loading", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055.
  40. Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2016), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc IMechE Part C: J. Mech. Eng. Sci., 203, 231-251. https://doi.org/10.1177/0954406216653622.
  41. Mohammadimehr, M.M., Mehrabi, M., Mousavinejad, F.S. (2020), "Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature method", J. Vib. Control., 27(15-16), 1842-1859. https://doi.org/10.1177/1077546320949083.
  42. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets", Compos. Struct., 113(1), 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007.
  43. Nejadi, M.M., Mohammadimehr, M., Mehrabi, M. (2021), "Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flo", Alex. Eng. J., 60(1), 1945-1954. https://doi.org/10.1016/j.aej.2020.11.042
  44. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B, 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
  45. Nguyen, C.H., Butukuri, R.R., Chandrashekhara, K. and Birman, V. (2011), "Dynamics and buckling of sandwich panels with stepped facings", Int. J. Struct. Stab. Dyn., 11(4), 697-716. https://doi.org/10.1142/S0219455411004300.
  46. Nguyen, T.K., Nguyen, T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B, 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  47. Noh, M.S., Kim, S., Hwang, D.K. and Kang, C.Y. (2017), "Self-powered flexible touch sensors based on PZT thin films using laser lift-off", Sens. Actuator Phys., 261, 288-294. https://doi.org/10.1016/j.sna.2017.04.046.
  48. Pascual, C., Montali, J. and Overend, M., (2017), "Adhesively-bonded GFRP-glass sandwich components for structurally efficient glazing applications", Compos. Struct., 560, 560-573. https://doi.org/10.1016/j.compstruct.2016.10.059.
  49. Phan, C.N., Kardomateas, G.A. and Frostig, Y. (2012), "Global buckling of sandwich beams based on the extended high-order theory", A.I.A.A. J., 50(8), 1707-1716. https://doi.org/10.2514/1.J051454.
  50. Romaszko, M., Sapinski, B. and Snamina, J. (2018), "Complex vibration modes in magnetorheological fluid - based sandwich beams", Compos. Struct., 204, 475-486. https://doi.org/10.1016/j.compstruct.2018.07.062.
  51. Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of sandwich plate-reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation metho", J. Vib. Control., 27(15-16), 1736-1752. https://doi.org/10.1177/1077546320948330.
  52. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  53. Sharaf, T. and Fam, A. (2012), "Numerical modelling of sandwich panels with soft core and different rib configuration", J. Reinforce. Plastic. Compos., 31(11), 771-784. https://doi.org/10.1177/0731684412445494.
  54. Shawkat, W., Honickman, H. and Fam, A. (2008), "Investigation of a Novel Composite Cladding Wall Panel in Flexur", J. Compos. Mater., 42(3), 315-330. https://doi.org/10.1177/0021998307087965.
  55. Shen, W., Luo, B., Yan, R., Zeng, H. and Xu, L. (2017), "The mechanical behavior of sandwich composite joints for ship structures", Ocean Eng., 144, 78-89 . https://doi.org/10.1016/j.oceaneng.2017.08.039.
  56. Snigdha Tummala, V., Mian, A., Chamok, N.H., Poduval, D., Ali, M., Clifford, J. and Majumdar, P. (2017), "Three dimensional printed dielectric substrates for radio frequency applications", J. Electron. Packag., 139(2), https://doi.org/10.1115/1.4036384.
  57. Suzuki, T., Aoki, T., Ogasawara, T. and Fujita, K. (2017), "Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission", Acta Astronaut., 136, 402-420. https://doi.org/10.1016/j.actaastro.2017.04.001.
  58. Tung, H.V. (2015), "Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties", Compos. Struct, 131, 1028-1039. https://doi.org/10.15625/0866-7136/38/1/7036.
  59. Vescovini, R., D'Ottavio, M., Dozio, L. and Polit, O. (2017), "Thermal buckling response of laminated and sandwich plates using refined 2-D models", Compos. Struct., 176, 28. https://doi.org/10.1016/j.compstruct.2017.05.021.
  60. Vidal, P. and Polit, O. (2010), "Vibration of multilayered beams using sinus finite elements with transverse normal stress", Compos. Struct., 92, 1524-1534. https://doi.org/10.1016/j.compstruct.2009.10.009.
  61. Wang, G.F. and Feng, X.Q., (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Let., 90, 229-231. https://doi.org/10.1063/1.2746950.
  62. Wang, Y., Fu, T. and Zhang, W. (2021), "An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: Applications to dynamic stability analysis", Thin. Wall. Struct., 160, 107400. https://doi.org/10.1016/j.tws.2020.107400.
  63. Wang, Y., Ren, H., Fu, T. and Shi, C. (2020), "Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory", Acta. Astron., 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036.
  64. Wang, Y., Xie, K. and Fu, T. (2020), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73(6), 685-698, https://doi.org/10.12989/sem.2020.73.6.685.
  65. Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014.
  66. Wang, Y., Xie, K., Shi, C. and Fu, T. (2019), "Nonlinear bending of axially functionally graded microbeams reinforced by graphene nanoplatelets in thermal environments", Mater. Res. Express., 6, 085615. https://doi.org/10.1088/2053-1591/ab1eef
  67. Wang. Y. and Wu. D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aero. Space. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  68. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1-17. https://doi.org/10.1142/S0219455415400118.
  69. Xie, G., Zhang, R. and Manca, O. (2017), "Thermal and thermomechanical performances of pyramidal core sandwich panels under aerodynamic heating", J. Ther. Scie. Eng. Appl., 9(1), 1-9. https://doi.org/10.1115/1.4034914.
  70. Yang, L., Fan, H., Liu, J., Ma, Y. and Zheng, Q. (2013), "Hybrid lattice-core sandwich composites designed for microwave absorption", Mater. Des., 50, 863-871. https://doi.org/10.1016/j.matdes.2013.03.032.
  71. Yang, M. and Qiao, P. (2005), "Higher-order impact modeling of sandwich structures with flexible core", Int J Solids Struct., 42, 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037.
  72. Yang, Y., Pagani, A. and Carrera, E. (2017), "Exact solutions for free vibration analysis of laminated, box and sandwich beams by refined layer-wise theory", Compos. Struct., 175, 25-45. https://doi.org/10.1016/j.compstruct.2017.05.003.
  73. Zhang, Y.H., Campbell, S.A., Zhang, L. and Karthikeyan, S. (2017), "Sandwich structure based on back-side etching silicon (100) wafers for flexible electronic technology", Microsyst. Technol., 23(3), 739-743. https://doi.org/10.1007%2Fs00542-015-2737-7. https://doi.org/10.1007%2Fs00542-015-2737-7
  74. Zhang, Z., Han, B., Zhang, Q. and Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid Cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045.
  75. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. http://dx.doi.org/10.12989/scs.2018.26.2.125.