DOI QR코드

DOI QR Code

Spectroscopic Analysis of the Remote-plasma-polymerized Methyl Methacrylate Film

원격 플라즈마 중합된 메틸메타크릴레이트 필름의 분광학적 분석

  • Seomoon, Kyu (Department of Energy.Applied Chemistry, Cheongju University)
  • 서문규 (청주대학교 에너지.응용화학전공)
  • Received : 2020.12.14
  • Accepted : 2020.12.31
  • Published : 2021.02.10

Abstract

Plasma-polymerized methyl methacrylate (MMA) thin films were synthesized by remote plasma, and effects of plasma power, reaction pressure and direct-indirect plasma on the growth rate and chemical bonding were investigated with alpha-step, FT-IR, XPS and Langmüir probe method. As the plasma power and pressure increased, the tendency of growth rate showed maximum value at a certain range. FT-IR and XPS analyses revealed that composition ratio of C/O and hydrocarbon (C-C) % in the deposited films increased with plasma power, but ester (COO) C % decreased with it. Direct plasma method was effective for fast growth rate, but indirect plasma method was favorable for maintaining the chemical structure of MMA.

메틸 메타크릴레이트 분자를 전구체로 사용하여 원격 플라즈마 방식으로 중합체를 합성하는 반응에서 플라즈마 출력, 반응 압력 및 직접-간접 플라즈마 방식이 필름의 성장속도 및 화학결합 구조에 미치는 영향을 조사하였으며, FT-IR, XPS 등 분광학적 분석과 Langmvir 탐침을 사용한 플라즈마 특성 진단 결과와 함께 고찰하였다. 플라즈마 출력과 반응 압력이 증가하면 성장속도가 증가하지만 특정 영역을 넘어서면 식각 효과와 잦은 충돌로 인해 활성화 효율이 낮아져 다시 감소하였다. 중합 필름의 FT-IR과 XPS 분석 결과, 필름 내 탄소/산소 조성비는 플라즈마 출력이 커질수록 증가하였으며, 탄화수소성 C-C 탄소 조성비는 증가하는 반면 에스터성 COO 탄소 조성비는 감소하였다. 직접 플라즈마법이 간접 플라즈마법에 비해 필름의 성장속도는 2~5배 빠르지만, 전구체의 분자 구조를 유지하기 위해서는 간접 플라즈마법이 유리함을 확인하였다.

Keywords

References

  1. R. Wolf and A. Sparavigna, Role of plasma surface treatments on wetting and adhesion, Engineering, 2, 397-402 (2010). https://doi.org/10.4236/eng.2010.26052
  2. S. Kaplan, Plasma surface treatment of plastics to enhance adhesion, Int. J. Adhes. Adhes., 11, 109-113 (1991). https://doi.org/10.1016/0143-7496(91)90035-G
  3. B. Cho, G. Han, K. Oh, S. Chung, and B. Chun, The effect of plasma polymer coating using atmospheric-pressure glow discharge on the shear bond strength of composite resin to ceramic, J. Mater. Sci., 46, 2755-2763 (2011). https://doi.org/10.1007/s10853-010-5149-1
  4. A. Wrobel, A. Pietrzykowska, Y. Hatanaka, S. Wickramanayaka, and Y. Nakanishi, Oligomerization and polymerization steps in remote plasma chemical vapor deposition of silicon-carbon and silica films from organosilicon sources, Chem. Mater., 13, 1884-1895 (2001). https://doi.org/10.1021/cm001044+
  5. M. Kahoush, N. Behary, A. Cayla, B. Mutel, J. Guan, and V. Nierstrasz, Surface modification of carbon felt by cold remote plasma for glucose oxidase enzyme immobilization, Appl. Surf. Sci., 476, 1016-1024 (2019). https://doi.org/10.1016/j.apsusc.2019.01.155
  6. M. Okada, K. Matsuda, T. Sato, K. Yamada, K. Matsuda, and T. Hiaki, Polymerization of methyl methacrylate initiated by atmospheric pressure plasma jet, J. Photopolym. Sci. Technol., 28, 461-464 (2015). https://doi.org/10.2494/photopolymer.28.461
  7. B. Li, Q. Sun, G. Li, and X. Hou, Plasma initiated emulsion polymerization of MMA, Plasma Sci. Technol., 1, 67-71 (1999). https://doi.org/10.1088/1009-0630/1/1/010
  8. R. Bitar, P. Cools, N. Geyter, and R. Morent, Acrylic acid plasma polymerization for biomedical use, Appl. Surf. Sci., 448, 1, 168-185 (2018). https://doi.org/10.1016/j.apsusc.2018.04.129
  9. O. Carton, D. Salem, S. Bhatt, J. Pulpytel, and F. Khonsari, Plasma polymerization of acrylic acid by atmospheric pressure nitrogen plasma jet for biomedical applications, Plasma Processes Polym., 9, 984-993 (2012). https://doi.org/10.1002/ppap.201200044
  10. H. Yasuda, Plasma Polymerization, 1st ed., 169, Academic Press, NY, USA (1985).
  11. H. Yasuda and T. Yasuda, The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment, J. Polym. Sci., Part A: Polym. Chem., 38, 943-953 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000315)38:6<943::AID-POLA3>3.0.CO;2-3
  12. D. Briggs and M. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 1st ed., 425-426, John Wiley & Sons, NY, USA (1983).
  13. A. Grill, Cold Plasma in Materials Fabrication, 1st ed., 160-161, John Wiley & Sons, NY, USA (1994).