DOI QR코드

DOI QR Code

Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy

  • Jin, Hyung-seung (Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Park, Yoon (Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST))
  • 투고 : 2020.10.06
  • 심사 : 2020.12.07
  • 발행 : 2021.01.31

초록

Antibody-based therapeutics targeting the inhibitory receptors PD-1, PD-L1, or CTLA-4 have shown remarkable clinical progress on several cancers. However, most patients do not benefit from these therapies. Thus, many efforts are being made to identify new immune checkpoint receptor-ligand pathways that are alternative targets for cancer immunotherapies. Nectin and nectin-like molecules are widely expressed on several types of tumor cells and play regulatory roles in T- and NK-cell functions. TIGIT, CD226, CD96 and CD112R on lymphoid cells are a group of immunoglobulin superfamily receptors that interact with Nectin and nectin-like molecules with different affinities. These receptors transmit activating or inhibitory signals upon binding their cognate ligands to the immune cells. The integrated signals formed by their complex interactions contribute to regulating immune-cell functions. Several clinical trials are currently evaluating the efficacy of anti-TIGIT and anti-CD112R blockades for treating patients with solid tumors. However, many questions still need to be answered in order to fully understand the dynamics and functions of these receptor networks. This review addresses the rationale behind targeting TIGIT, CD226, CD96, and CD112R to regulate T- and NK-cell functions and discusses their potential application in cancer immunotherapy.

키워드

참고문헌

  1. Thommen DS, Schumacher TN (2018) T cell dysfunction in cancer. Cancer Cell 33, 547-562 https://doi.org/10.1016/j.ccell.2018.03.012
  2. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10 https://doi.org/10.1016/j.immuni.2013.07.012
  3. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359, 1350-1355 https://doi.org/10.1126/science.aar4060
  4. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17, e542-e551 https://doi.org/10.1016/S1470-2045(16)30406-5
  5. Zaretsky JM, Garcia-Diaz A, Shin DS et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375, 819-829 https://doi.org/10.1056/NEJMoa1604958
  6. Kong X (2018) Discovery of new immune checkpoints: family grows up. Adv Exp Med Biol 1248, 61-82 https://doi.org/10.1007/978-981-15-3266-5_4
  7. Rotte A, Jin JY, Lemaire V (2018) Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol 29, 71-83 https://doi.org/10.1093/annonc/mdx686
  8. Chan CJ, Andrews DM, Smyth MJ (2012) Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol 24, 246-251 https://doi.org/10.1016/j.coi.2012.01.009
  9. Sanchez-Correa B, Valhondo I, Hassouneh F et al (2019) DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers (Basel) 11, 877 https://doi.org/10.3390/cancers11060877
  10. Whelan S, Ophir E, Kotturi MF et al (2019) PVRIG and PVRL2 are induced in cancer and inhibit CD8(+) T-cell function. Cancer Immunol Res 7, 257-268 https://doi.org/10.1158/2326-6066.cir-18-0442
  11. Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y (2006) Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 11, 8 https://doi.org/10.1186/s13045-017-0552-6
  12. Gorvel L, Olive D (2020) Targeting the "PVR-TIGIT axis" with immune checkpoint therapies. F1000Res 9, F1000 Faculty Rev-354
  13. Fuchs A, Colonna M (2006) The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 16, 359-366 https://doi.org/10.1016/j.semcancer.2006.07.002
  14. Nakanishi H, Takai Y (2004) Roles of nectins in cell adhesion, migration and polarization. Biol Chem 385, 885-892 https://doi.org/10.1515/BC.2004.116
  15. Zhang Q, Bi J, Zheng X et al (2018) Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 19, 723-732 https://doi.org/10.1038/s41590-018-0132-0
  16. Kucan Brlic P, Lenac Rovis T, Cinamon G, Tsukerman P, Mandelboim O, Jonjic S (2019) Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 16, 40-52 https://doi.org/10.1038/s41423-018-0168-y
  17. Nishiwada S, Sho M, Yasuda S et al (2015) Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res 35, 2287-2297
  18. Triki H, Charfi S, Bouzidi L et al (2019) CD155 expression in human breast cancer: clinical significance and relevance to natural killer cell infiltration. Life Sci 231, 116543 https://doi.org/10.1016/j.lfs.2019.116543
  19. Carlsten M, Norell H, Bryceson YT (2009) Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol 183, 4921-4930 https://doi.org/10.4049/jimmunol.0901226
  20. Joller N, Hafler JP, Brynedal B et al (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186, 1338-1342 https://doi.org/10.4049/jimmunol.1003081
  21. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172, 3994-3998 https://doi.org/10.4049/jimmunol.172.7.3994
  22. Yu X, Harden K, Gonzalez LC et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10, 48-57 https://doi.org/10.1038/ni.1674
  23. Stanietsky N, Rovis TL, Glasner A et al (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43, 2138-2150 https://doi.org/10.1002/eji.201243072
  24. Deuss FA, Watson GM, Fu Z, Rossjohn J, Berry R (2019) Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155. Structure 27, 219-228 https://doi.org/10.1016/j.str.2018.10.023
  25. Okumura G, Iguchi-Manaka A, Murata R, Yamashita-Kanemaru Y, Shibuya A, Shibuya K (2020) Tumor-derived soluble CD155 inhibits DNAM-1-mediated antitumor activity of natural killer cells. J Exp Med 217, 1
  26. Weulersse M, Asrir A, Pichler AC et al (2020) Eomesdependent loss of the co-activating receptor CD226 restrains CD8(+) T cell anti-tumor functions and limits the efficacy of cancer immunotherapy. Immunity 53, 824-839 https://doi.org/10.1016/j.immuni.2020.09.006
  27. Zhu Y, Paniccia A, Schulick AC et al (2016) Identification of CD112R as a novel checkpoint for human T cells. J Exp Med 213, 167-176 https://doi.org/10.1084/jem.20150785
  28. Pende D, Castriconi R, Romagnani P et al (2006) Expression of the DNAM-1 ligands, nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107, 2030-2036 https://doi.org/10.1182/blood-2005-07-2696
  29. Seth S, Maier MK, Qiu Q et al (2007) The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem Biophys Res Commun 364, 959-965 https://doi.org/10.1016/j.bbrc.2007.10.102
  30. Satoh-Horikawa K, Nakanishi H, Takahashi K (2000) Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem 275, 10291-10299 https://doi.org/10.1074/jbc.275.14.10291
  31. Reches A, Ophir Y, Stein N et al (2020) Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity. J Immunother Cancer 8, e000266 https://doi.org/10.1136/jitc-2019-000266
  32. Harjunpaa H, Guillerey C (2020) TIGIT as an emerging immune checkpoint. Clin Exp Immunol 200, 108-119 https://doi.org/10.1111/cei.13407
  33. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188, 3869-3875 https://doi.org/10.4049/jimmunol.1103627
  34. Johnston RJ, Comps-Agrar L, Hackney J et al (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923-937 https://doi.org/10.1016/j.ccell.2014.10.018
  35. Joller N, Lozano E, Burkett PR et al (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569-581 https://doi.org/10.1016/j.immuni.2014.02.012
  36. Kurtulus S, Sakuishi K, Ngiow SF et al (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 125, 4053-4062 https://doi.org/10.1172/JCI81187
  37. Yang ZZ, Kim HJ, Wu H et al (2020) TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma. Clin Cancer Res 26, 5217-5231 https://doi.org/10.1158/1078-0432.ccr-20-0558
  38. Kong Y, Zhu L, Schell TD et al (2016) T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res 22, 3057-3066 https://doi.org/10.1158/1078-0432.CCR-15-2626
  39. Chauvin JM, Pagliano O, Fourcade J et al (2015) TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest 125, 2046-2058 https://doi.org/10.1172/JCI80445
  40. Guillerey C, Harjunpaa H, Carrie N et al (2018) TIGIT immune checkpoint blockade restores CD8(+) T-cell immunity against multiple myeloma. Blood 132, 1689-1694 https://doi.org/10.1182/blood-2018-01-825265
  41. He W, Zhang H, Han F et al (2017) CD155T/TIGIT signaling regulates CD8(+) T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res 77, 6375-6388 https://doi.org/10.1158/0008-5472.CAN-17-0381
  42. O'Brien SM, Klampatsa A, Thompson JC et al (2019) Function of human tumor-infiltrating lymphocytes in earlystage non-small cell lung cancer. Cancer Immunol Res 7, 896-909 https://doi.org/10.1158/2326-6066.CIR-18-0713
  43. Ostroumov D, Duong S, Wingerath J et al (2020) Transcriptome profiling identifies TIGIT as a marker of T cell exhaustion in liver cancer. Hepatology [Online ahead of print]
  44. Stalhammar G, Seregard S, Grossniklaus HE (2019) Expression of immune checkpoint receptors Indoleamine 2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med 8, 2784-2792 https://doi.org/10.1002/cam4.2167
  45. Xu D, Zhao E, Zhu C et al (2020) TIGIT and PD-1 may serve as potential prognostic biomarkers for gastric cancer. Immunobiology 225, 151915 https://doi.org/10.1016/j.imbio.2020.151915
  46. Wu L, Mao L, Liu JF et al (2019) Blockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res 7, 1700-1713 https://doi.org/10.1158/2326-6066.cir-18-0725
  47. Lucca LE, Lerner BA, Park C et al (2020) Differential expression of the T-cell inhibitor TIGIT in glioblastoma and MS. Neurol Neuroimmunol Neuroinflamm 7, e712 https://doi.org/10.1212/nxi.0000000000000712
  48. Jin HS, Ko M, Choi DS et al (2020) CD226(hi)CD8(+) T cells are a prerequisite for anti-TIGIT immunotherapy. Cancer Immunol Res 8, 912-925 https://doi.org/10.1158/2326-6066.cir-19-0877
  49. McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37, 457-495 https://doi.org/10.1146/annurev-immunol-041015-055318
  50. Hashimoto M, Kamphorst AO, Im SJ et al (2018) CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 69, 301-318 https://doi.org/10.1146/annurev-med-012017-043208
  51. Tang W, Pan X, Han D et al (2019) Clinical significance of CD8(+) T cell immunoreceptor with Ig and ITIM domains(+) in locally advanced gastric cancer treated with SOX regimen after D2 gastrectomy. Oncoimmunology 8, e1593807 https://doi.org/10.1080/2162402x.2019.1593807
  52. Fuhrman CA, Yeh WI, Seay HR et al (2015) Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol 195, 145-155 https://doi.org/10.4049/jimmunol.1402381
  53. Duan X, Liu J, Cui J et al (2019) Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol Med Rep 20, 3773-3781
  54. Fourcade J, Sun Z, Chauvin JM et al (2018) CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 3, e121157 https://doi.org/10.1172/jci.insight.121157
  55. Dixon KO, Schorer M, Nevin J et al (2018) Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol 200, 3000-3007 https://doi.org/10.4049/jimmunol.1700407
  56. Chiu DK, Yuen VW, Wing-Sum Cheu J et al (2020) Hepatocellular carcinoma cells up-regulate PVRL1, stabilizing poliovirus receptor and inhibiting the cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology 159, 609-623 https://doi.org/10.1053/j.gastro.2020.03.074
  57. Lee BR, Chae S, Moon J et al (2020) Combination of PD-L1 and PVR determines sensitivity to PD-1 blockade. JCI Insight 5, e128633 https://doi.org/10.1172/jci.insight.128633
  58. Jin HS, Choi DS, Ko M et al (2019) Extracellular pH modulating injectable gel for enhancing immune checkpoint inhibitor therapy. J Control Release 315, 65-75 https://doi.org/10.1016/j.jconrel.2019.10.041
  59. Hung AL, Maxwell R, Theodros D et al (2018) TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 7, e1466769 https://doi.org/10.1080/2162402x.2018.1466769
  60. Grapin M, Richard C, Limagne E et al (2019) Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer 7, 160 https://doi.org/10.1186/s40425-019-0634-9
  61. Wang B, Zhang W, Jankovic V et al (2018) Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8(+) T cell dysfunction and maintain memory phenotype. Sci Immunol 3, eaat7061 https://doi.org/10.1126/sciimmunol.aat7061
  62. Liu S, Zhang H, Li M et al (2013) Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20, 456-464 https://doi.org/10.1038/cdd.2012.141
  63. Shibuya K, Lanier LL, Phillips JH (1999) Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 11, 615-623 https://doi.org/10.1016/S1074-7613(00)80136-3
  64. Enqvist M, Ask EH, Forslund E et al (2015) Coordinated expression of DNAM-1 and LFA-1 in educated NK cells. J Immunol 194, 4518-4527 https://doi.org/10.4049/jimmunol.1401972
  65. Shibuya A, Campbell D, Hannum C et al (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4, 573-581 https://doi.org/10.1016/S1074-7613(00)70060-4
  66. Iguchi-Manaka A, Kai H, Yamashita Y et al (2008) Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 205, 2959-2964 https://doi.org/10.1084/jem.20081611
  67. Sanchez-Correa B, Gayoso I, Bergua JM et al (2012) Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 90, 109-115 https://doi.org/10.1038/icb.2011.15
  68. Minnie SA, Kuns RD, Gartlan KH et al (2018) Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood 132, 1675-1688
  69. Jin Z, Lan T, Zhao Y et al (2020) Higher TIGIT(+)CD226(-) gammadelta T cells in patients with acute myeloid leukemia. Immunol Invest 1-11 [Online ahead of print]
  70. Gilfillan S, Chan CJ, Cella M et al (2008) DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 205, 2965-2973 https://doi.org/10.1084/jem.20081752
  71. Chan CJ, Martinet L, Gilfillan S et al (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15, 431-438 https://doi.org/10.1038/ni.2850
  72. Lakshmikanth T, Burke S, Ali TH et al (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119, 1251-1263 https://doi.org/10.1172/JCI36022
  73. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A (2015) DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med 212, 2165-2182 https://doi.org/10.1084/jem.20150792
  74. Braun M, Aguilera AR, Sundarrajan A et al (2020) CD155 on tumor cells drives resistance to immunotherapy by inducing the degradation of the activating receptor CD226 in CD8(+) T cells. Immunity 53, 805-823 https://doi.org/10.1016/j.immuni.2020.09.010
  75. Georgiev H, Ravens I, Papadogianni G, Bernhardt G (2018) Coming of age: CD96 emerges as modulator of immune responses. Front Immunol 9, 1072 https://doi.org/10.3389/fimmu.2018.01072
  76. Lepletier A, Lutzky VP, Mittal D et al (2019) The immune checkpoint CD96 defines a distinct lymphocyte phenotype and is highly expressed on tumor-infiltrating T cells. Immunol Cell Biol 97, 152-164 https://doi.org/10.1111/imcb.12205
  77. Mittal D, Lepletier A, Madore J et al (2019) CD96 is an immune checkpoint that regulates CD8(+) T-cell antitumor function. Cancer Immunol Res 7, 559-571 https://doi.org/10.1158/2326-6066.CIR-18-0637
  78. Sun H, Huang Q, Huang M et al (2019) Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology 70, 168-183 https://doi.org/10.1002/hep.30347
  79. Peng YP, Xi CH, Zhu Y et al (2016) Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer. Oncotarget 7, 66586-66594 https://doi.org/10.18632/oncotarget.11953
  80. Blake SJ, Stannard K, Liu J et al (2016) Suppression of metastases using a new lymphocyte checkpoint target for cancer immunotherapy. Cancer Discov 6, 446-459 https://doi.org/10.1158/2159-8290.CD-15-0944
  81. Chiang EY, de Almeida PE, de Almeida Nagata DE et al (2020) CD96 functions as a co-stimulatory receptor to enhance CD8(+) T cell activation and effector responses. Eur J Immunol 50, 891-902 https://doi.org/10.1002/eji.201948405
  82. Meyer D, Seth S, Albrecht J et al (2009) CD96 interaction with CD155 via its first Ig-like domain is modulated by alternative splicing or mutations in distal Ig-like domains. J Biol Chem 284, 2235-2244 https://doi.org/10.1074/jbc.M807698200
  83. Chambers CA (2001) The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol 22, 217-223 https://doi.org/10.1016/S1471-4906(01)01868-3
  84. Roman Aguilera A, Lutzky VP, Mittal D et al (2018) CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. Oncoimmunology 7, e1424677 https://doi.org/10.1080/2162402X.2018.1424677
  85. Murter B, Pan X, Ophir E et al (2019) Mouse PVRIG has CD8(+) T cell-specific coinhibitory functions and dampens antitumor immunity. Cancer Immunol Res 7, 244-256 https://doi.org/10.1158/2326-6066.cir-18-0460
  86. Xu F, Sunderland A, Zhou Y, Schulick RD, Edil BH, Zhu Y (2017) Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions. Cancer Immunol Immunother 66, 1367-1375 https://doi.org/10.1007/s00262-017-2031-x