DOI QR코드

DOI QR Code

Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity

  • Yadollahi, Pedram (Innovative Therapeutic Research Institute, Inje University) ;
  • Jeon, You-Kyoung (Innovative Therapeutic Research Institute, Inje University) ;
  • Ng, Wooi Loon (Innovative Therapeutic Research Institute, Inje University) ;
  • Choi, Inhak (Innovative Therapeutic Research Institute, Inje University)
  • Received : 2020.10.20
  • Accepted : 2020.11.30
  • Published : 2021.01.31

Abstract

In the last decade, we have witnessed an unprecedented clinical success in cancer immunotherapies targeting the programmed cell-death ligand 1 (PD-L1) and programmed cell-death 1 (PD-1) pathway. Besides the fact that PD-L1 plays a key role in immune regulation in tumor microenvironment, recently a plethora of reports has suggested a new perspective of non-immunological functions of PD-L1 in the regulation of cancer intrinsic activities including mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy. Here we review the current understanding on the regulation of expression and intrinsic protumoral activity of cancer-intrinsic PD-L1.

Keywords

References

  1. Chen L and Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13, 227-242 https://doi.org/10.1038/nri3405
  2. Cai J, Wang D, Zhang G and Guo X (2019) The role of PD-1/PD-L1 axis in treg development and function: implications for cancer immunotherapy. Onco Targets Ther 12, 8437-8445 https://doi.org/10.2147/OTT.S221340
  3. Xin Yu J, Hodge JP, Oliva C, Neftelinov ST, HubbardLucey VM and Tang J (2020) Trends in clinical development for PD-1/PD-L1 inhibitors. Nat Rev Drug Discov 19, 163-164 https://doi.org/10.1038/d41573-019-00182-w
  4. Sun L, Zhang L, Yu J et al (2020) Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep 10, 2083 https://doi.org/10.1038/s41598-020-58674-4
  5. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ and Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111, 3635-3643 https://doi.org/10.1182/blood-2007-11-123141
  6. Yu W, Hua Y, Qiu H et al (2020) PD-L1 promotes tumor growth and progression by activating WIP and beta-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis 11, 506 https://doi.org/10.1038/s41419-020-2701-z
  7. Lee S-J, Jang B-C, Lee S-W et al (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-γ-induced upregulation of B7-H1 (CD274). FEBS Lett 580, 755-762 https://doi.org/10.1016/j.febslet.2005.12.093
  8. Cancer Genome Atlas Research Network (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378-384 https://doi.org/10.1038/nature21386
  9. Steidl C, Shah SP, Woolcock BW et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377-381 https://doi.org/10.1038/nature09754
  10. Kataoka K, Shiraishi Y, Takeda Y et al (2016) Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature 534, 402-406 https://doi.org/10.1038/nature18294
  11. Wu Y, Zhao T, Jia Z et al (2019) Polymorphism of the programmed death‐ligand 1 gene is associated with its protein expression and prognosis in gastric cancer. J Gastroenterol Hepatol 34, 1201-1207 https://doi.org/10.1111/jgh.14520
  12. Xiao G, Jin L-L, Liu C-Q et al (2019) EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J Immunother Cancer 7, 1-15 https://doi.org/10.1186/s40425-018-0484-x
  13. Nair VS, El Salhat H, Taha RZ, John A, Ali BR and Elkord E (2018) DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin Epigenetics 10, 78 https://doi.org/10.1186/s13148-018-0512-1
  14. Lu C, Paschall AV, Shi H et al (2017) The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Cancer Inst 109, djw283 https://doi.org/10.1093/jnci/djw283
  15. Casey SC, Tong L, Li Y et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227-231 https://doi.org/10.1126/science.aac9935
  16. Song TL, Nairismagi M-L, Laurensia Y et al (2018) Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132, 1146-1158
  17. Ruf M, Moch H and Schraml P (2016) PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer 139, 396-403 https://doi.org/10.1002/ijc.30077
  18. Noman MZ, Desantis G, Janji B et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211, 781-790 https://doi.org/10.1084/jem.20131916
  19. Green MR, Rodig S, Juszczynski P et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18, 1611-1618 https://doi.org/10.1158/1078-0432.CCR-11-1942
  20. Liu J, Hamrouni A, Wolowiec D et al (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110, 296-304
  21. Stutvoet TS, Kol A, de Vries EG et al (2019) MAPK pathway activity plays a key role in PD‐L1 expression of lung adenocarcinoma cells. J Pathol 249, 52-64 https://doi.org/10.1002/path.5280
  22. Coelho MA, de Carne Trecesson S, Rana S et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083-1099 https://doi.org/10.1016/j.immuni.2017.11.016
  23. Hong S, Chen N, Fang W et al (2016) Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients. Oncoimmunology 5, e1094598 https://doi.org/10.1080/2162402X.2015.1094598
  24. van Rensburg HJJ, Azad T, Ling M et al (2018) The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res 78, 1457-1470 https://doi.org/10.1158/0008-5472.CAN-17-3139
  25. Chen J, Zhang XD and Proud C (2015) Dissecting the signaling pathways that mediate cancer in PTEN and LKB1 double-knockout mice. Sci Signal 8, pe1 https://doi.org/10.1126/scisignal.aac8321
  26. Thiem A, Hesbacher S, Kneitz H et al (2019) IFN-gammainduced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res 38, 1-15 https://doi.org/10.1186/s13046-018-1018-6
  27. Cortez MA, Ivan C, Valdecanas D et al (2016) PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 108, djv303
  28. Xu Y-p, Lv L, Liu Y et al (2019) Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J Clin Invest 129, 4316-4331 https://doi.org/10.1172/JCI129317
  29. Wu A, Wu Q, Deng Y et al (2019) Loss of VGLL 4 suppresses tumor PD‐L1 expression and immune evasion. EMBO J 38, e99506
  30. Yan Y, Zheng L, Du Q, Yan B and Geller DA (2020) Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol Immunother 69, 891-1903
  31. Dorand RD, Nthale J, Myers JT et al (2016) Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353, 399-403 https://doi.org/10.1126/science.aae0477
  32. Chen L, Liu S and Tao Y (2020) Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 5, 90 https://doi.org/10.1038/s41392-020-0196-9
  33. Wei S, Wang K, Huang X, Zhao Z and Zhao Z (2019) LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed deathligand 1 axis. Int J Immunopathol Pharmacol 33, 2058738419859699
  34. Zhao L, Liu Y, Zhang J, Liu Y and Qi Q (2019) LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis 10, 1-15 https://doi.org/10.1038/s41419-018-1236-z
  35. Mineo M, Lyons SM, Zdioruk M et al (2020) Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 Locus. Mol Cell 78, 1209-1223
  36. Li CW, Lim SO, Xia W et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7, 12632 https://doi.org/10.1038/ncomms12632
  37. Chan LC, Li CW, Xia W et al (2019) IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J Clin Invest 129, 3324-3338 https://doi.org/10.1172/JCI126022
  38. Apriamashvili G, Vredevoogd DW, Krijgsman O et al (2020) Loss of ubiquitin ligase STUB1 amplifies IFNγ-R1/JAK1 signaling and sensitizes tumors to IFNγ. bioRxiv, https://doi.org/10.1101/2020.07.07.191650
  39. Mezzadra R, Sun C, Jae LT et al (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106-110 https://doi.org/10.1038/nature23669
  40. Burr ML, Sparbier CE, Chan Y-C et al (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101-105 https://doi.org/10.1038/nature23643
  41. Lim SO, Li CW, Xia W et al (2016) Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925-939 https://doi.org/10.1016/j.ccell.2016.10.010
  42. Zhang J, Bu X, Wang H et al (2019) Author correction: cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 571, E10 https://doi.org/10.1038/s41586-019-1351-8
  43. Xu J, Meng Q, Li X et al (2019) Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR17-5p. Cancer Res 79, 4882-4895 https://doi.org/10.1158/0008-5472.can-18-3880
  44. Zhang M, Wang N, Song P et al (2020) LncRNA GATA3- AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif 53, e12855 https://doi.org/10.1111/cpr.12855
  45. Gato-Canas M, Zuazo M, Arasanz H et al (2017) PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep 20, 1818-1829 https://doi.org/10.1016/j.celrep.2017.07.075
  46. Dongre A and Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20, 69-84 https://doi.org/10.1038/s41580-018-0080-4
  47. Cao Y, Zhang L, Kamimura Y et al (2011) B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res 71, 1235-1243 https://doi.org/10.1158/0008-5472.CAN-10-2217
  48. Wang Y, Wang H, Zhao Q, Xia Y, Hu X and Guo J (2015) PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol 32, 212 https://doi.org/10.1007/s12032-015-0655-2
  49. Qiu XY, Hu DX, Chen WQ et al (2018) PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta Mol Basis Dis 1864, 1754-1769 https://doi.org/10.1016/j.bbadis.2018.03.002
  50. Cui P, Jing P, Liu X and Xu W (2020) Prognostic significance of PD-L1 expression and its tumor-intrinsic functions in hypopharyngeal squamous cell carcinoma. Cancer Manag Res 12, 5893-5902 https://doi.org/10.2147/CMAR.S257299
  51. Fei Z, Deng Z, Zhou L, Li K, Xia X and Xie R (2019) PD-L1 induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells through activation of the PI3K/AKT Pathway. Oncol Res 27, 801-807 https://doi.org/10.3727/096504018X15446984186056
  52. Zhang Y, Zeng Y, Liu T et al (2019) The canonical TGF-beta/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir Res 20, 164 https://doi.org/10.1186/s12931-019-1137-4
  53. Clark CA, Gupta HB, Sareddy G et al (2016) Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res 76, 6964-6974 https://doi.org/10.1158/0008-5472.CAN-16-0258
  54. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F and Lisanti MP (2017) Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 14, 11-31 https://doi.org/10.1038/nrclinonc.2016.60
  55. Chang CH, Qiu J, O'Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229-1241 https://doi.org/10.1016/j.cell.2015.08.016
  56. Wang S, Li J, Xie J et al (2018) Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin beta4/SNAI1/SIRT3 signaling pathway. Oncogene 37, 4164-4180 https://doi.org/10.1038/s41388-018-0252-x
  57. Kim S, Jang JY, Koh J et al (2019) Programmed cell death ligand-1-mediated enhancement of hexokinase 2 expression is inversely related to T-cell effector gene expression in non-small-cell lung cancer. J Exp Clin Cancer Res 38, 462 https://doi.org/10.1186/s13046-019-1407-5
  58. Lin R, Zhang H, Yuan Y et al (2020) Fatty acid oxidation controls CD8(+) tissue-resident memory T-cell survival in gastric adenocarcinoma. Cancer Immunol Res 8, 479-492 https://doi.org/10.1158/2326-6066.cir-19-0702
  59. Najafi M, Farhood B and Mortezaee K (2019) Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol 234, 8381-8395 https://doi.org/10.1002/jcp.27740
  60. Tamai K, Nakamura M, Mizuma M et al (2014) Suppressive expression of CD274 increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma. Cancer Sci 105, 667-674 https://doi.org/10.1111/cas.12406
  61. Jinesh GG, Manyam GC, Mmeje CO, Baggerly KA and Kamat AM (2017) Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis. Sci Rep 7, 9602 https://doi.org/10.1038/s41598-017-08796-z
  62. Wu Y, Chen M, Wu P, Chen C, Xu ZP and Gu W (2017) Increased PD-L1 expression in breast and colon cancer stem cells. Clin Exp Pharmacol Physiol 44, 602-604 https://doi.org/10.1111/1440-1681.12732
  63. Almozyan S, Colak D, Mansour F et al (2017) PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer 141, 1402-1412 https://doi.org/10.1002/ijc.30834
  64. Zhang X, Li F, Zheng Y et al (2019) Propofol reduced mammosphere formation of breast cancer stem cells via PD-L1/Nanog in vitro. Oxid Med Cell Longev 2019, 9078209 https://doi.org/10.1155/2019/9078209
  65. Wei F, Zhang T, Deng SC et al (2019) PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett 450, 1-13 https://doi.org/10.1016/j.canlet.2019.02.022
  66. Ishibashi M, Tamura H, Sunakawa M et al (2016) Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunol Res 4, 779-788 https://doi.org/10.1158/2326-6066.CIR-15-0296
  67. Black M, Barsoum IB, Truesdell P et al (2016) Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget 7, 10557-10567 https://doi.org/10.18632/oncotarget.7235
  68. Liu S, Chen S, Yuan W et al (2017) PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8, 99901-99912 https://doi.org/10.18632/oncotarget.21914
  69. Feng D, Qin B, Pal K et al (2019) BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 38, 6752-6766 https://doi.org/10.1038/s41388-019-0919-y
  70. Tu X, Qin B, Zhang Y et al (2019) PD-L1 (B7-H1) Competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol Cell 74, 1215-1226 e1214 https://doi.org/10.1016/j.molcel.2019.04.005
  71. Brech A, Ahlquist T, Lothe RA and Stenmark H (2009) Autophagy in tumour suppression and promotion. Mol Oncol 3, 366-375 https://doi.org/10.1016/j.molonc.2009.05.007
  72. Clark CA, Gupta HB and Curiel TJ (2017) Tumor cell-intrinsic CD274/PD-L1: a novel metabolic balancing act with clinical potential. Autophagy 13, 987-988 https://doi.org/10.1080/15548627.2017.1280223
  73. Chen RQ, Xu XH, Liu F et al (2019) The binding of PD-L1 and Akt facilitates glioma cell invasion upon starvation via Akt/Autophagy/F-Actin signaling. Front Oncol 9, 1347 https://doi.org/10.3389/fonc.2019.01347
  74. Gao H, Zhang J and Ren X (2019) PD-L1 regulates tumorigenesis and autophagy of ovarian cancer by activating mTORC signaling. Biosci Rep 39, BSR20191041 https://doi.org/10.1042/BSR20191041
  75. Huttlin EL, Ting L, Bruckner RJ et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425-440 https://doi.org/10.1016/j.cell.2015.06.043
  76. Escors D, Gato-Canas M, Zuazo M et al (2018) The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther 3, 26 https://doi.org/10.1038/s41392-018-0022-9