DOI QR코드

DOI QR Code

Update of early phase clinical trials in cancer immunotherapy

  • Lee, Dae Ho (Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center)
  • Received : 2020.10.19
  • Accepted : 2020.12.15
  • Published : 2021.01.31

Abstract

Immunotherapy has revolutionized the landscape of cancer treatment and become a standard pillar of the treatment. The two main drivers, immune checkpoint inhibitors and chimeric antigen receptor T cells, contributed to this unprecedented success. However, despite the striking clinical improvements, most patients still suffer from disease progression because of the evolution of primary or acquired resistance. This mini-review summarizes new treatment options including novel targets and interesting combinational approaches to increase our understanding of the mechanisms of the action of and resistance to immunotherapy, to expand our knowledge of advances in biomarker and therapeutics development, and to help to find the most appropriate option or a way of overcoming the resistance for cancer patients.

Keywords

References

  1. Anderson AC, Joller N and Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT co-inhibitory receptors with specialized functions in immunity regulation. Immunity 44, 989-1004 https://doi.org/10.1016/j.immuni.2016.05.001
  2. Koyama S, Akbay EA, Li YY et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immunity checkpoints. Nat Commun 7, 10501 https://doi.org/10.1038/ncomms10501
  3. Lepletier A, Madore J, O'Donnell JS et al (2020) Tumor CD155 expression is associated with resistance to anti-PD1 immunotherapy in metastatic melanoma. Clin Cancer Res 26, 3671-3368 https://doi.org/10.1158/1078-0432.ccr-19-3925
  4. He W, Zhang H, Han F et al (2017) CD155T/TIGIT Signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res 77, 6375-6388 https://doi.org/10.1158/0008-5472.CAN-17-0381
  5. Chauvin J-M, Pagliano O, Fourcade J et al (2015) TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 125, 2046-2058 https://doi.org/10.1172/JCI80445
  6. Bendell JC, Bedard P, Bang YJ et al (2020) Phase Ia/Ib dose-escalation study of the anti-TIGIT antibody tiragolumab as a single agent and in combination with atezolizumab in patients with advanced solid tumors. Clin Cancer Res 80 (suppl 16), abstract CT302
  7. Rodriguez-Abreu D, Johnson ML, Hussein MA et al (2020). Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 38 (suppl 15), abstract 9503
  8. Ahn MJ, Niu J, Kim DW et al (2020) Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC. Ann Oncol 31 (suppl 4), S887, abstract 1400P https://doi.org/10.1016/j.annonc.2020.08.1714
  9. Niu J, Nagrial A, Voskoboynik M et al (2020) Safety and efficacy of vibostolimab, an anti-TIGIT antibody, plus pembrolizumab in patients with anti-PD-1/PD-L1-naive NSCLC. Ann Oncol 31 (suppl 4), S891-892, abstract 1410P
  10. Ascierto PA, Bono P, Bhatia S et al (2017) Efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3 (LAG-3), in combination with nivolumab in pts with melanoma who progressed during prior anti-PD-1/PD-L1 therapy (mel prior IO) in all-comer and biomarker-enriched populations. Ann Oncol 28 (suppl 5), V611-612, abstract LBA18 https://doi.org/10.1093/annonc/mdx440.011
  11. Felip E, Doger B, Majem M et al (2020) Initial results from a phase II study (TACTI-002) in metastatic non-small cell lung or head and neck carcinoma patients receiving eftilagimod alpha (soluble LAG-3 protein) and pembrolizumab. J Clin Oncol 38 (suppl 15), abstract 3100
  12. Hong DS, Schoffski P, Calvo A et al (2018) Phase I/II study of LAG525 ± spartalizumab (PDR001) in patients (pts) with advanced malignancies. J Clin Oncol 36 (suppl 15), abstract 3012
  13. Lakhani B, Bauer TM, Abraham AK et al (2018) The anti-LAG-3 antibody MK-4280 as monotherapy and in combination with pembrolizumab for advanced solid tumors: first-in-human phase 1 dose-finding study. J Immunother Cancer 6 (suppl 1), 115 abstract O26
  14. Davar D, Boasberg P, Eroglu Z et al (2018) A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in combination with TSR-042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. J Immunother Cancer 6 (suppl 1), 114 abstract O21
  15. Villarroel-Espindola F, Yu X, Datar I et al (2018) Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin Cancer Res 24, 1562-1573 https://doi.org/10.1158/1078-0432.CCR-17-2542
  16. Deng J, Li J, Sarde A et al (2019) Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol Res 7, 1019-1090
  17. Radhakrishnan VS, Bakhshi S, Prabhash K et al (2018) Phase 2 trial of CA-170, a novel oral small molecule dual inhibitor of immunity checkpoints VISTA and PD-1, in patients (pts) with advanced solid tumor and Hodgkin lymphoma. J Immunother Cancer 6 (suppl 1), 115 abstract P714 https://doi.org/10.1186/s40425-018-0423-x
  18. Radhakrishnan V, Banavali S, Gupta S et al (2019) Excellent CBR and prolonged PFS in non-squamous NSCLC with oral CA-170, an inhibitor of VISTA and PD-L1. Ann Oncol 30 (suppl 5), V475-532 abstract 3012
  19. Suh WK, Gajewska BU, Okada H et al (2003) The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immunity responses. Nat Immunol 4, 899-906 https://doi.org/10.1038/ni967
  20. Lee Y, Martin-Orozco N, Zheng P et al (2017) Inhibition of the B7-H3 immunity-checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res 27, 1034-1045 https://doi.org/10.1038/cr.2017.90
  21. Powderly J, Cote G, Flaherty K et al (2015) Interim results of an ongoing phase 1, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculature expresses B7-H3. J Immunother Cancer 3 (suppl 2), abstract O8
  22. Aggarwal C, Joshua A, Ferris R et al (2018) A phase 1, open-label, dose escalation study of Enoblituzumab in combination with Pembrolizumab in patients with select solid tumors. J Immunotherapy Cancer 6 (suppl 2), 114, abstract P24 https://doi.org/10.1186/s40425-018-0422-y
  23. Yap TA, Gainor JF, Callahan MK et al (2019) Improved progression-free and overall survival (PFS/OS) in patients (pts) with emergence of JTX-2011 associated biomarker (ICOS high CD4 T cells) on the ICONIC trial. Cancer Res 79 (suppl 13), abstract CT189
  24. Rischin D, Groenland SL, Lim AML et al (2019) Inducible T cell costimulatory (ICOS) receptor agonist, GSK 3359609 (GSK609) alone and in combination with Pembrolizumab (pembro): preliminary results from INDUCE-1 expansion cohorts (EC) in head and neck squamous cell carcinoma (HNSCC). Ann Oncol 30 (suppl 5), V449-474, abstract 4541
  25. Diab A, El-Khoueiry A, Eskens FA et al (2016) A first-inhuman (FIH) study of PF-04518600 (PF-8600) OX40 agonist in adult patients (pts) with select advanced malignancies Ann Oncol 27 (suppl 6), V359-378, abstract 3148
  26. Postel-Vinay S, Lam VK, Ros W et al (2020) Abstract CT150: A first-in-human phase I study of the OX40 agonist GSK3174998 (GSK998) +/- pembrolizumab in patients (Pts) with selected advanced solid tumors (ENGAGE-1). Cancer Res 80 (suppl 16), abstract CT150
  27. Glisson BS, Leidner RS, Ferris RL et al (2020) Safety and clinical activity of MEDI0562, a humanized OX40 agonist monoclonal antibody, in adult patients with advanced solid tumors. Clin Cancer Res 26, 5358-5367 https://doi.org/10.1158/1078-0432.ccr-19-3070
  28. Curti BD, Kovacsovics-Bankowski M, Morris N et al (2013) OX40 is a potent immunity-stimulating target in late-stage cancer patients. Cancer Res 73, 7189-7198 https://doi.org/10.1158/0008-5472.CAN-12-4174
  29. Infante JR, Hansen AR, Pishvaian MJ et al (2016) A phase Ib dose escalation study of the OX40 agonist MOXR0916 and the PD-L1 inhibitor atezolizumab in patients with advanced solid tumors. J Clin Oncol 34 (suppl 15), abstract 101
  30. Koon H, Shepard D, Merghoub T et al (2016) First-inhuman phase 1 single-dose study of TRX-518, an antihuman glucocorticoid-induced tumor necrosis factor receptor (GITR) monoclonal antibody in adults with advanced solid tumors. J Clin Oncol 34 (suppl 15), abstract 3017
  31. Zappasodi R, Sirard C, Li Y et al (2019) Rational design of anti-GITR-based combination immunotherapy. Nat Med 25, 759-766 https://doi.org/10.1038/s41591-019-0420-8
  32. Papadopoulos KP, Autio KA, Golan T et al (2019) Phase 1 study of MK-4166, an anti-human glucocorticoid-induced tumor necrosis factor receptor (GITR) antibody, as monotherapy or with pembrolizumab (pembro) in patients (pts) with advanced solid tumors. J Clin Oncol 37 (suppl 15), abstract 9509
  33. Geva R, Voskoboynik M, Dobrenkov K et al (2020) First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer 15, 4926-4935
  34. Heinhuis KM, Carlino M, Joerger M et al (2020) Safety, tolerability, and potential clinical activity of a glucocorticoid-induced TNF receptor-related protein agonist alone or in combination with nivolumab for patients with advanced solid tumors: a phase 1/2a dose-escalation and cohort-expansion clinical trial. JAMA Oncol 6, 100-107 https://doi.org/10.1001/jamaoncol.2019.3848
  35. Tran B, Carvajal RD, Marabelle A et al (2018) Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor-related protein agonist AMG 228 in patients with advanced solid tumors. J Immunother Cancer 6, 93 https://doi.org/10.1186/s40425-018-0407-x
  36. Balmanoukian A, Infante JR, Aljumaily R et al (2020) Safety and clinical activity of MEDI1873, a novel GITR agonist, in advanced solid tumors. Clin Cancer Res 26, 6196-6203 https://doi.org/10.1158/1078-0432.CCR-20-0452
  37. Chan IH, Xie MH, Lam A et al (2018) In vitro functional activity of OMP-336B11, a GITRL-Fc fusion protein, on primary human immunity cells. Cancer Res 78 (suppl 13), abstract 2726
  38. Segal NH, Logan TF, Hodi FS et al (2017) Results from an integrated safety analysis of urelumab, an agonist antiCD137 monoclonal antibody. Clin Cancer Res 23, 1929-1936. https://doi.org/10.1158/1078-0432.CCR-16-1272
  39. Zhang J, Song K, Wang J et al (2018) S100A4 blockage alleviates agonistic anti-CD137 antibody-induced liver pathology without disruption of antitumor immunity. OncoImmunology 7, e1296996 https://doi.org/10.1080/2162402X.2017.1296996
  40. Timmerman J, Herbaux C, Ribrag V et al (2020) Urelumab alone or in combination with rituximab in patients with relapsed or refractory B-cell lymphoma. Am J Hematol 95, 510-520 https://doi.org/10.1002/ajh.25757
  41. Massarelli E, Segal NH, Ribrag V et al (2016) Clinical safety and efficacy assessment of the CD137 agonist urelumab alone and in combination with nivolumab in patients with hematologic and solid tumor malignancies. J Immunother Cancer 4, 82 abstract O7 https://doi.org/10.1186/s40425-016-0172-7
  42. Segal NH, He AR, Doi T et al (2018) Phase I study of single-agent Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin Cancer Res 24, 1816-1823 https://doi.org/10.1158/1078-0432.CCR-17-1922
  43. Gopal AK, Levy R, Houot R et al (2020) First-in-human study of Utomilumab, a 4-1BB/CD137 agonist, in combination with Rituximab in patients with follicular and other CD20+ non-Hodgkin lymphomas. Clin Cancer Res 26, 2524-2534 https://doi.org/10.1158/1078-0432.ccr-19-2973
  44. Tolcher AW, Sznol M, Hu-Lieskovan S et al (2017) Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res 23, 5349-5357 https://doi.org/10.1158/1078-0432.CCR-17-1243
  45. Cohen EEW, Pishvaian MJ, Shepard DR et al (2019) A phase Ib study of utomilumab (PF-05082566) in combination with mogamulizumab in patients with advanced solid tumors. J Immunother Cancer 7, 342 https://doi.org/10.1186/s40425-019-0815-6
  46. Compte M, Harwood SL, Muñoz IG et al (2018) A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat Commun 9, 4809 https://doi.org/10.1038/s41467-018-07195-w
  47. Piha-Paul S, Bendell J, Tolcher A et al (2019) Phase 1 dose escalation study of PRS-343, a HER2/4-1BB bispecific molecule, in patients with HER2+ malignancies. J Immunother Cancer 8 (suppl 1), abstract LBA O82
  48. Ansell SM, Flinn I, Taylor MH et al (2020) Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, for hematologic malignancies. Blood Adv 4, 1917-1926 https://doi.org/10.1182/bloodadvances.2019001079
  49. Aftimos P, Rolfo C, Rottey S et al (2017) Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies. Clin Cancer Res 23, 6411-6420 https://doi.org/10.1158/1078-0432.CCR-17-0613
  50. Bagot M, Maerevoet M, Zinzani PL et al (2018) ARGX-110 for treatment of CD70-positive advanced cutaneous T-cell lymphoma in a phase 1/2 Clinical Trial. Blood 132 (suppl 1), 1627
  51. Ochsenbein AF, Riether C, Bacher U et al (2018) ARGX110 targeting CD70, in combination with azacitidine, shows favorable safety profile and promising anti-leukemia activity in newly diagnosed AML patients in an ongoing phase 1/2 clinical trial. Blood 132 (suppl 1), abstract 2680
  52. Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immunity modulation in cancer patients treated with CP-870893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25, 876-883 https://doi.org/10.1200/JCO.2006.08.3311
  53. Ruter J, Antonia SJ, Burris HA 3rd et al (2010) Immunity modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol Ther 10, 983-993 https://doi.org/10.4161/cbt.10.10.13251
  54. Vonderheide RH, Burg JM, Mick R et al (2013) Phase I study of the CD40 agonist antibody CP-870893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2, e23033 https://doi.org/10.4161/onci.23033
  55. Beatty GL, Torigian DA, Chiorean EG et al (2013) A phase I study of an agonist CD40 monoclonal antibody (CP-870893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res 19, 6286-6295 https://doi.org/10.1158/1078-0432.CCR-13-1320
  56. Nowak AK, Cook AM, McDonnell AM et al (2015) A phase 1b clinical trial of the CD40-activating antibody CP-870893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol 26, 2483-2490 https://doi.org/10.1093/annonc/mdv387
  57. Johnson M, Fakih M, Bendell J et al (2017) First in human study with the CD40 agonistic monoclonal antibody APX005M in subjects with solid tumors. J Immunother Cancer 5 (suppl 3), abstract 89
  58. Vitale LA, Thomas LJ, He LZ et al (2019) Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol Immunother 68, 233-245 https://doi.org/10.1007/s00262-018-2267-0
  59. Grilley-Olson J, Curti BD, Smith DC et al (2018) SEACD40, a non-fucosylated CD40 agonist: interim results from a phase 1 study in advanced solid tumors. J Clin Oncol 36 (suppl 15), abstract 3093
  60. Johnson P, Challis R, Chowdhury F et al (2015) Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin Cancer Res 21, 1321-1328 https://doi.org/10.1158/1078-0432.CCR-14-2355
  61. O'Hara MH, O'Reilly EM, Mick R et al (2019) A phase 1b study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine and nab-paclitaxel with or without nivolumab in untreated metastatic pancreatic ductal adenocarcinoma (PDAC) patients. Cancer Res 79 (suppl 13), abstract CT004
  62. Overman MJ, LoRusso P, Strickler JH et al (2018) Safety, efficacy and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc). J Clin Oncol 36 (suppl 15), abstract 4123
  63. Siu LL, Buriss H, Le DT et al (2018) Preliminary phase 1 profile of BMS-986179, an anti-CD73 antibody, in combination with nivolumab in patients with advanced solid tumors. Cancer Res 78 (suppl 13), abstract CT180
  64. Fong L, Hotson A, Powderly JD et al (2020) Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov 10, 40-53 https://doi.org/10.1158/2159-8290.cd-19-0980
  65. Fong L, Forde PM, Powderly JD et al (2017) Safety and clinical activity of adenosine A2a receptor (A2aR) antagonist, CPI-444, in anti-PD1/PDL1 treatment-refractory renal cell (RCC) and non-small cell lung cancer (NSCLC) patients. J Clin Oncol 35 (suppl 15), abstract 3004
  66. Fong L, Chu M, George S et al (2019) Adenosine receptor blockade with Ciforadenant ± Atezolizumab in advanced metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol 38 (suppl 6), abstract 129
  67. Chippori A, Williams CC, Creelan BC et al (2018) Phase I/II study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with advanced NSCLC. J Clin Oncol 36 (suppl 15), abstract 9089
  68. Chiappori A, Creelan B, Tanvetyanon T et al (2018) Phase I/II study of the A2AR antagonist NIR178 (PBF-509) combined with the anti-PD-1 monoclonal antibody spartalizumab in patients with advanced NSCLC. Eur J Cancer 103 (suppl 1) e13-e20 O8
  69. Bendell J, Bauer T, Patel M et al (2019) Evidence of immunity activation in the first-in-human phase Ia dose escalation study of the adenosine 2a receptor antagonist, AZD4635, in patients with advanced solid tumors. Cancer Res 79 (suppl 13), abstract CT026
  70. Lim EA, Bauer TM, Patel MR et al (2020) A phase I, open-label, multicenter study to assess the safety, pharmacokinetics, and preliminary antitumor activity of AZD4635 both as monotherapy and in combination in patients with advanced solid malignancies: results from prostate cancer patients. J Clin Oncol 38 (suppl 15), abstract 5518
  71. Powderly JD, de Souza PL, Gutierrez R et al (2019) AB928, a novel dual adenosine receptor antagonist, combined with chemotherapy or AB122 (anti-PD-1) in patients (pts) with advanced tumors: preliminary results from ongoing phase I studies. J Clin Oncol 37 (suppl 15), abstract 2604
  72. Jha GG, Gupta S, Tagawa ST et al (2019) A phase II randomized, double-blind study of sipuleucel-T followed by IDO pathway inhibitor, indoximod, or placebo in the treatment of patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol 35 (suppl 15), abstract 3066
  73. Bahary N, Wang-Gillam A, Haraldsdottir S et al (2018) Phase 2 trial of the IDO pathway inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of patients with metastatic pancreas cancer. J Clin Oncol 36 (suppl 15), abstract 4015
  74. Zakharia Y, Rixe O, Ward JH et al (2018) Phase 2 trial of the IDO pathway inhibitor indoximod plus checkpoint inhibition for the treatment of patients with advanced melanoma. J Clin Oncol 36 (suppl 15), abstract 9512
  75. Long GV, Dummer R, Hamid O et al (2019) Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE- 252): a phase 3, randomised, double-blind study. Lancet Oncol 20, 1083-1097 https://doi.org/10.1016/s1470-2045(19)30274-8
  76. Cassier PA, Italiano A, Gomez-Roca CA et al (2015) CSF1R inhibition with emactuzumab in locally advanced diffusetype tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol 16, 949-956 https://doi.org/10.1016/S1470-2045(15)00132-1
  77. Gomez-Roca CA, Italiano A, Le Tourneau C et al (2019) Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol 30, 1381-1392 https://doi.org/10.1093/annonc/mdz163
  78. Calvo A, Joensuu H, Sebastian M et al (2018) Phase Ib/II study of lacnotuzumab (MCS110) combined with spartalizumab (PDR001) in patients (pts) with advanced tumors. J Clin Oncol 36 (suppl 15), abstract 3014
  79. Advani R, Flinn I, Popplewell L et al (2018) CD47 blockade by Hu5F9-G4 and rituximab in non-hodgkin's lymphoma. N Engl J Med 379, 1711-1721 https://doi.org/10.1056/NEJMoa1807315
  80. Sallmann DA, Donnellan WB, Asch AS et al (2019) The first-in-class anti-CD47 antibody Hu5F9-G4 is active and well tolerated alone or with azacitidine in AML and MDS patients: Initial phase 1b results. J Clin Oncol 37 (suppl 15), abstract 7009
  81. Sikic BI, Lakhani N, Patnaik A et al (2019) First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol 37, 946-953 https://doi.org/10.1200/JCO.18.02018
  82. Abrisqueta P, Sancho JM, Cordoba R et al (2019) AntiCD47 antibody, CC-90002, in combination with Rituximab in subjects with relapsed and/or refractory non-Hodgkin lymphoma (R/R NHL). Blood 134 (suppl 1), abstract 4089
  83. Kim TM, Lakhani N, Gainor J et al (2019) A Phase 1 study of ALX148, a CD47 blocker, in combination with Rituximab in patients with non-Hodgkin lymphoma. Blood 134 (suppl 1), abstract 1953
  84. Chow LQM, Gainor JF, Lakhani NJ et al (2020) A phase I study of ALX148, a CD47 blocker, in combination with standard anticancer antibodies and chemotherapy regimens in patients with advanced malignancy. J Clin Oncol 38 (suppl 15), abstract 3056
  85. Nywening TM, Wang-Gillam A, Sanford DE et al (2016) Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer, a single-centre, open-label, dose-finding, nonrandomised, phase 1b trial. Lancet Oncol 17, 651-662 https://doi.org/10.1016/S1470-2045(16)00078-4
  86. Noel M, Lowery M, Ryan D et al (2017) Phase Ib study of PF-04136309 (an oral CCR2 inhibitor) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic adenocarcinoma. Ann Oncol 28 (suppl 5), V209-268, abstract 2138
  87. Pienta KJ, Machiels JP, Schrijvers D et al (2013) Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 31, 760-768 https://doi.org/10.1007/s10637-012-9869-8
  88. Kim YH, Bagot M, Pinter-Brown L et al (2018) Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol 19, 1192-1204 https://doi.org/10.1016/S1470-2045(18)30379-6
  89. Doi T, Muro K, Ishii H et al (2019) A phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin Cancer Res 25, 6614-6622 https://doi.org/10.1158/1078-0432.ccr-19-1090
  90. Zamarin D, Hamid O, Nayak-Kapoor A et al (2020) Mogamulizumab in combination with durvalumab or tremelimumab in patients with advanced solid tumors: a phase I study. Clin Cancer Res 26, 4531-4541 https://doi.org/10.1158/1078-0432.ccr-20-0328
  91. Schott AF, Goldstein LJ, Cristofanilli M et al (2017) Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res 23, 5358-5365 https://doi.org/10.1158/1078-0432.CCR-16-2748
  92. Salgia R, Stille JR, Weaver RW et al (2017) A randomized phase II study of LY2510924 and carboplatin/etoposide versus carboplatin/etoposide in extensive-disease small cell lung cancer. Lung Cancer 105, 7-13 https://doi.org/10.1016/j.lungcan.2016.12.020
  93. Hainsworth JD, Reeves JA, Mace JR et al (2016) A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with sunitinib versus sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Target Oncol 11, 643-653 https://doi.org/10.1007/s11523-016-0434-9
  94. O'Hara MH, Messersmith W, Kindler H et al (2020) Safety and pharmacokinetics of CXCR4 peptide antagonist, LY2510924, in combination with Durvalumab in advanced refractory solid tumors. J Pancreat cancer 6, 21-31 https://doi.org/10.1089/pancan.2019.0018
  95. Pernas S, Martin M, Kaufman PA et al (2018) Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol 19, 812-824 https://doi.org/10.1016/S1470-2045(18)30147-5
  96. Kaufman PA, Simon SP, Martin M et al (2019) Balixafortide (a CXCR4 antagonist) + eribulin in HER2-negative metastatic breast cancer (MBC): Survival outcomes of the phase I trial. J Clin Oncol 37 (suppl 15), abstract 2606
  97. Benson DM Jr, Hofmeister CC, Padmanabhan S et al (2012) A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 120, 4324-4333
  98. Vey N, Bourhis JH, Boissel N et al (2012) A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120, 4317-4323
  99. Vey N, Goncalves A, Karlin L et al (2015) A phase 1 dose-escalation study of IPH2102 (lirilumab, BMS-986015, LIRI), a fully human anti KIR monoclonal antibody (mAb) in patients (pts) with various hematologic (HEM) or solid malignancies (SOL). J Clin Oncol 33 (suppl 15), abstract 3065
  100. Leidner R, Kang H, Haddad R et al (2016) Preliminary efficacy from a phase 1/2 study of the natural killer cell-targeted antibody, lirilumab in combination with nivolumab in squamous cell carcinoma of the head and neck. J Immunother Cancer 4, 91 https://doi.org/10.1186/s40425-016-0191-4
  101. Bagot M, Porcu P, Marie-Cardine A et al (2019) IPH4102, a first-in-class anti-KIR3DL2 monoclonal antibody, in patients with relapsed or refractory cutaneous T-cell lymphoma: an international, first-in-human, open-label, phase 1 trial. Lancet Oncol 20, 160-170
  102. Cohen RB, Bauman JR, Salas S et al (2020) Combination of monalizumab and cetuximab in recurrent or metastatic head and neck cancer patients previously treated with platinum-based chemotherapy and PD-(L)1 inhibitors. J Clin Oncol 38 (suppl 15), abstract 6516
  103. Harrington KJ, Brody J, Ingham M et al (2018) Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas, Ann Oncol 29 (suppl 8), 712 abstract 5475
  104. Meric-Bernstam F, Sandhu SK, Hamid O et al (2019) Phase ib study of miw815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J Clin Oncol 37 (suppl 15), abstract 2507