DOI QR코드

DOI QR Code

SOFC 스택 적용 마이크로웨이브-매트릭스 개질기 개발

Development of Microwave-Matrix Reformer for Applying SOFC Stack

  • 안준 (조선대학교 환경공학과) ;
  • 전영남 (조선대학교 환경공학과)
  • AN, JUNE (Department of Environmental Engineering, Chosun University) ;
  • CHUN, YOUNG NAM (Department of Environmental Engineering, Chosun University)
  • 투고 : 2021.10.14
  • 심사 : 2021.12.09
  • 발행 : 2021.12.30

초록

In this study, a novel microwave-matrix reformer was proposed to convert CH4, which is a major component, to a high quality hydrogen energy. And to identify this performance, it was investigated for O2/C ratio, steam feed amount and reformed gas recirculation which are affected for methane conversion and product gas yield. Through the parametric screening studies, optimal operating conditions were that O2/C ratio, steam feed amount and recirculation rate were 1.1, 10 mL/min and 30 L/min. In this conditions, CH4 conversion was 68.1%, H2 selectivity 77.2 and H2/CO ratio 2.62 which are possible applying SOFC stack for RPG (residential power generator).

키워드

과제정보

이 논문은 2021학년도 조선대학교 학술연구비 지원을 받아 연구되었습니다.

참고문헌

  1. R. Snoeckx and A. Bogaerts, "Plasma technology-a novel solution for CO2conversion", Chem. Soc. Rev., Vol. 46, No. 19, 2017, pp. 5805-5863, doi: https://doi.org/10.1039/C6CS00066E.
  2. H. S. Song, S. J. Kwon, W. Epling, and E. Crosiet, "Synthesis gas production via partial oxidation, CO2 reforming, and oxidative CO2 reforming of CH4 over a Ni/Mg-Ai hydrotalcite-type catalyst", Clean Technology, Vol. 20, No. 2, 2014, pp. 189-201, doi: https://doi.org/10.7464/ksct.2014.20.2.189.
  3. J. H. Hong, H. J. Ha, and J. D. Han, "The promotion effects on partial oxidation for methane for hydrogen production over Co/Al2O3 and Ni/Al2O3 catalsts", Clean Technology, Vol. 18, No. 1, 2012, pp. 95-101, doi: https://doi.org/10.7464/ksct.2012.18.1.095.
  4. P. Beckhaus, A. Heinzel, J. Mathiak, and J. Roes, "Dynamic of H2 production by steamreforming", J. Power Sources, Vol. 127, No. 1-2, 2004, pp. 294-299, doi: https://doi.org/10.1016/j.jpowsour.2003.09.026.
  5. U. R. Cheon, K. S. Ahn, and H. K. Shin, "Study on the characteristics of methanol steam reformer using latent heat of steam", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 1, 2018, pp. 19-24, doi: https://doi.org/10.7316/KHNES.2018.29.1.19.
  6. S. G. Wang, Y. W. Li, J. X Lu, M. Y. He, and H. Jiao, "A detailed mechanism of thermal CO2 reforming of CH4", J. Molecular. Structure, Vol. 673, No. 1-3, 2004, pp. 181-189, doi: https://doi.org/10.1016/j.theochem.2003.12.013.
  7. D. B. Han and Y. S. Baek, "A simulation study on the synthesis of syngas from the reforming reaction of biogas", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 1, 2018, pp. 1-10, doi: https://doi.org/10.7316/KHNES.2018.29.1.1.
  8. A.E. Lutz, R.W. Bradshaw, L. Bromerg, and A. Rabinovich, "Thermodynamic analysis of hydrogen production by partial oxidation reforming", Int. J. Hydrogen Energy, Vol. 29, No. 8, 2004, pp. 809-816, doi: https://doi.org/10.1016/j.ijhydene.2003.09.015.
  9. L. Xu, Y. N. Liu, Y. J. Li, Z. Lin, X. X. Ma, and Y. L. Zhang, "Catalytic CH4 reforming with CO2 over activated carbon based catalysts", Appl Catal A Gen, Vol. 469, 2014, pp. 387-397, doi: https://doi.org/10.1016/j.apcata.2013.10.022.
  10. L. Li, H. G. Wang, X. Jiang, Z. Song, X. Zhao, and C. Y. Ma, "Microwave-enhanced methane combined reforming by CO2 and H2O into syngas production on biomass-derived char", Fuel, Vol. 185, 2016, pp. 692-700, doi: https://doi.org/10.1016/j.fuel.2016.07.098.
  11. T. Takeno and K. Sato, "An excess enthalpy flame theory", Combustion Sience and Technology, Vol. 20, No. 1-2, 1979, pp. 73-84, doi: https://doi.org/10.1080/00102207908946898.
  12. A. I. Bakry, "Stabilized premixed combustion within atmospheric gas porous inert medium (PIM) burner", Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, Vol. 222, No. 8, 2008, pp. 781-789, doi: https://doi.org/10.1243/09576509JPE608.
  13. X. Tu and J. C. Whitehead, "Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials", Int. J. Hydrog. Energy, Vol. 39, No. 18, pp. 9658-9669, doi: https://doi.org/10.1016/j.ijhydene.2014.04.073.