DOI QR코드

DOI QR Code

단일 수성가스 전이 반응용 Cu/CeO2 촉매 최적화: 수산화탄산세륨 전구체를 이용한 CeO2 제조 및 최적 Cu 담지량 선정

Optimization of Cu/CeO2 Catalyst for Single Stage Water-Gas Shift Reaction: CeO2 Production Using Cerium Hydroxy Carbonate Precursor and Selection of Optimal Cu Loading

  • 허유승 (창원대학교 스마트환경에너지공학과정) ;
  • 정창훈 (창원대학교 스마트환경에너지공학과정) ;
  • 박민주 (창원대학교 스마트환경에너지공학과정) ;
  • 김학민 (창원대학교 산업기술연구원) ;
  • 강부민 (창원대학교 환경공학과) ;
  • 정대운 (창원대학교 스마트환경에너지공학과정)
  • HEO YU-SEUNG (Department of Smart Environmental Energy Engineering, Changwon National University) ;
  • JEONG, CHANG-HOON (Department of Smart Environmental Energy Engineering, Changwon National University) ;
  • PARK, MIN-JU (Department of Smart Environmental Energy Engineering, Changwon National University) ;
  • KIM, HAK-MIN (Industrial Technology Research Center, Changwon National University) ;
  • KANG, BOO MIN (Department of Environmental Engineering, Changwon National University) ;
  • JEONG, DAE-WOON (Department of Smart Environmental Energy Engineering, Changwon National University)
  • 투고 : 2021.10.18
  • 심사 : 2021.12.10
  • 발행 : 2021.12.30

초록

In this study, CeO2 support is synthesized from cerium hydroxy carbonate prepared using precipitation/digestion method using KOH and K2CO3 as the precipitants. The Cu was impregnated to CeO2 support with the different loading (Cu loading=10-40 wt. %). The prepared Cu/CeO2 catalysts were applied to a single stage water gas shift (WGS) reaction. Among the prepared catalysts, the 20Cu/CeO2 catalyst contained 20 wt.% of Cu showed the highest CO conversion (Xco=68% at 400℃). This result was mainly due to a large amount of active sites. In addition, the activity of the 20 Cu/CeO2 catalyst was maintained without being deactivated for 100 hours because of the strong interaction between Cu and CeO2. Therefore, it was confirmed that 20 Cu/CeO2 is a suitable catalyst for a single WGS reaction.

키워드

과제정보

본 연구는 환경부의 폐자원에너지화 재활용 전문인력 양성사업으로부터 지원을 받았습니다(YL-WE-19-001). 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이다(No. 2019R1C1C1005022).

참고문헌

  1. J. Kim, S. H. Kim, and J. H. Kim, "Pressure retarded osmosis process: current status and future", J. Korean Soc. Environ. Eng., Vol. 36, No. 11. 2014, pp. 791-802, doi: https://doi.org/10.4491/ksee.2014.36.11.791.
  2. F. Johnsson, J. Kjarstad, and J. Rootzen, "The threat to climate change mitigation posed by the abundance of fossil fuels", Clim. Policy, Vol. 19, No. 2, 2019, pp. 258-274, doi: https://doi.org/10.1080/14693062.2018.1483885.
  3. J. W. Choi, J. Y. Lee, B. Lee, and T. Kim, "Exploring the knowledge structure of fuel cell electric vehicle in national R&D projects for the hydrogen economy", Journal of the Korea Contents Association, Vol. 21, No. 6, 2021, pp. 306-317, doi: https://doi.org/10.5392/JKCA.2021.21.06.306.
  4. H. Lee, Y. Woo, and M. J. Lee, "The needs for R&D of ammonia combustion technology for carbon neutrality - part II R&D trends and technical feasibility analysis", J. Korean Soc. Combust., Vol. 26, 2021, pp. 84-106, doi: https://doi.org/10.15231/jksc.2021.26.1.084.
  5. S. M. Lee, T. W. Kim, H. S. Lee, J. H. Lee, and S. G. Kang, "Statistical optimization of medium for formate-driven bio-hydrogen production by the hyperthermophilic archaeon, thermococus onnurineus", Ocean Polar Res, Vol. 39, No. 4, 2017, pp. 269-277, doi: https://doi.org/10.4217/OPR.2017.39.4.269.
  6. J. Chi and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese J. Catal., Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8.
  7. M. J. Park, H. M. Kim, Y. J. Gu, C. H. Jeong, B. M. Kang, S. W. Ha, and D. W. Jeong, "A study on fostering plan for the hydrogen industry in Changwon City", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 509-521, doi: https://doi.org/10.7316/KHNES.2020.31.6.509.
  8. S. Ryi, J. Han, C. Kim, H. Lim, and H. Jung, "Technical trends of hydrogem production", Clean Technol, Vol. 23, No. 2, 2017, pp. 121-132, doi: https://doi.org/10.7464/ksct.2017.23.2.121.
  9. H. S. Na, D. W. Jeong, W. J. Jang, J. O. Shim, and H. S. Roh, "The effect of preparation method on Fe/Al/Cu oxide-based catalyst performance for high temperature water gas shift reaction using simulated waste-derived synthesis gas", Int. J. Hydrogen Energy, Vol. 40, No. 36, 2015, pp. 12268-12274, doi: https://doi.org/10.1016/j.ijhydene.2015.07.060.
  10. M. Byun, B. Lee, H. Lee, S. Jung, H. Ji, and H. Lim, "Techno-economic and environmental assessment of methanol steam reforming for H2 production at various scales", Int. J. Hydrogen Energy, Vol. 45, No. 46, 2019, pp. 24146-24158, doi: https://doi.org/10.1016/j.ijhydene.2020.06.097.
  11. Y. Ju, H. T. Oh, J. C. Lee, and C. H. Lee, "Performance and dynamic behavior of sorption-enhanced water-gas shift reaction in a fluidized bed reactor for H2 production and CO2 capture", Chem. Eng. J., Vol. 410, 2021, pp. 127414, doi: https://doi.org/10.1016/j.cej.2020.127414.
  12. A. Lamacz, K. Matus, B. Liszka, J. Silvestre-Albero, M. Lafjah, T. Dintzer, and I. Janowska, "The impact of synthesis method of CNT supported CeZrO2 and Ni-CeZrO2 on catalytic activity in WGS reaction", Catal. Today, Vol. 301, 2018, pp. 172-182, doi: https://doi.org/10.1016/j.cattod.2017.03.035.
  13. W. J. Jang, H. S. Roh, and D. W. Jeong, "An important factor for the water gas shift reaction activity of cu-loaded cubic Ce0.8Zr0.2O2 catalysts", Environ. Eng. Res., Vol. 23, No. 3, 2018, pp. 339-344, doi: https://doi.org/10.4491/eer.2018.041.
  14. V. Palma, D. Pisano, M. Martino, A. Ricca, and P. Ciambelli, "Comparative studies of low temperature water gas shift reaction over platinum based catalysts", Chem. Eng. Trans., Vol. 39, 2014, pp. 31-36, doi: https://doi.org/10.3303/CET1439006.
  15. Y. Davoodbeygi and A. Irankhah, "Catalytic characteristics of CexCu1-xO1.9 catalysts formed by solid state method for MTS and OMTS reactions", Int. J. Hydrogen Energy, Vol. 44, No. 31, 2019, pp. 16443-16451, doi: https://doi.org/10.1016/j.ijhydene.2019.04.244.
  16. L. P. C. Silva, M. M. Freitas, L. E. Terra, A. C. S. L. S. Coutinho, and F. B. Passos, "Preparation of CuO/ZnO/Nb2O5 catalyst for the water-gas shift reaction", Catal Today, Vol. 344, 2020, pp. 59-65, doi: https://doi.org/10.1016/j.cattod.2018.10.028.
  17. Y. J. Gu, J. H. Kim, W. J. Jang, and D. W. Jeong, "A comparison of Cu/CeO2 catalysts prepared via different precipitants/digestion methods for single stage water gas shift reactions", Catal. Today, 2020, doi: https://doi.org/10.1016/j.cattod.2020.06.067.
  18. V. Palma and M. Martino, "Pt-Re based catalysts for the realization of a single stage water gas shift process", Chem. Eng. Trans., Vol. 57, 2017, pp. 1657-1662, doi: https://doi.org/10.3303/CET1757277.
  19. A. Alijani and A. Irankhah, "Medium-temperature shift catalysts for hydrogen purification in a single-stage reactor", Chem. Eng. Technol., Vol. 36, N0. 2, 2013, pp. 209-219, doi: https://doi.org/10.1002/ceat.201200151.
  20. X. Zhu, T. Hoang, L. L. Lobban, and R. G. Mallinson, "Significant improvement in activity and stability of Pt/TiO2 catalyst for water gas shift reaction via controlling the amount of Na addition", Catal. Letters, Vol. 129, 2009, pp. 135-141, doi: https://doi.org/10.1007/s10562-008-9799-4.
  21. H. S. Roh, D. W. Jeong, K. S. Kim, I. H. Eum, K. Y. Koo, and W. L. Yoon, "Single stage water-gas shift reaction over supported Pt catalysts", Catal. Letters, Vol. 141, 2011, pp. 95-99, doi: https://doi.org/10.1007/s10562-010-0480-3.
  22. K. R. Hwang, S. K. Ihm, S. C. Park, and J. S. Park, "Pt/ZrO2 catalyst for a single-stage water-gas shift reaction: Ti addition effect", Int. J. Hydrogen Energy., Vol. 38, No. 14, 2013, pp. 6044-6051, doi: https://doi.org/10.1016/j.ijhydene.2013.01.101.
  23. X. Zhu, M. Shen, L. L. Lobban, and R. G. Mallinson, "Structural effects of Na promotion for high water gas shift activity on Pt-Na/TiO2", J. Catal., Vol. 278, No. 1, 2011, pp. 123-132, doi: https://doi.org/10.1016/j.jcat.2010.11.023.
  24. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, "Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts", Science, Vol. 301, No. 5635, 2003, pp. 935-938, doi: https://doi.org/10.1126/science.1085721.
  25. H. M. Kim, K. W. Jeon, H. S. Na, W. J. Jang, and D. W. Jeong, "The effect of Cu loading on the performance of Cu-Ce0.8Zr0.2O2 catalysts for single stage water gas shift reaction", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 4, 2017, pp. 345-351, doi: https://doi.org/10.7316/KHNES.2017.28.4.345.
  26. Y. H. Lee, H. M. Kim, C. H. Jeong, and D. W. Jeong, "Effects of precipitants on the catalytic performance of Cu/CeO2 catalysts for the water-gas shift reaction", Catalysis Science & Technology, Vol. 11, 2021, pp. 6380-6389, doi: https://doi.org/10.1039/d1cy00964h.
  27. K. Rubin, A. Pohar, V. D. B. C. Dasireddy, and B. Likozar, "Synthesis, characterization and activity of CuZnGaOx catalysts for the water-gas shift (WGS) reaction for H2 production and CO removal after reforming", Fuel Process. Technol., Vol. 169, 2018, pp. 217-225, doi: https://doi.org/10.1016/j.fuproc.2017.10.008.
  28. L. Pastor-Perez, S. Gu, A. Sepulveda-Escribano, and T. R. Reina, "Bimetallic Cu-Ni catalysts for the WGS reaction - Cooperative or uncooperative effect", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4011-4019. doi: https://doi.org/10.1016/j.ijhydene.2018.12.127.
  29. T. Tabakova, L. Ilieva, I. Ivanov, R. Zanella, J. W. Sobczak, W. Lisowski, Z. Kaszkur, and D. Andreeva, "Influence of the preparation method and dopants nature on the WGS activity of gold catalysts supported on doped by transition metals ceria", Appl. Catal. B Environ., Vol. 136-137, 2013, pp. 70-80, doi: https://doi.org/10.1016/j.apcatb.2013.01.050.
  30. R. Farra, M. Garcia-Melchor, M. Eichelbaum, M. Hashagen, W. Frandsen, J. Allan, F. Girgsdies, L. Szentmiklosi, N. Lopez, and D. Teschner, "Promoted ceria: a structural, catalytic, and computational study", ACS Catal., Vol. 3, No. 10, 2013, pp. 2256-2268, doi: https://doi.org/10.1021/cs4005002.
  31. C. J. Shih, Y. J. Chen, and M. H. Hon, "Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process", Mater. Chem. Phys., Vol. 121, No. 1-2, 2010, pp. 99-102, doi: https://doi.org/10.1016/j.matchemphys.2010.01.001.
  32. C. Perego and P. Villa, "Catalyst preparation methods", Catal. Today, Vol. 34, No. 3-4, 1997, pp. 281-305, doi: https://doi.org/10.1016/S0920-5861(96)00055-7.
  33. F. Cavani, F. Trifiro, and A. Vaccari, "Hydrotalcite-type anionic clays: preparation, properties and applications", Catal. Today, Vol. 11, No. 2, 1991, pp. 173-301, doi: https://doi.org/10.1016/0920-5861(91)80068-K.
  34. J. B. Ko, C. M. Bae, Y. S. Jung, and D. H. Kim, "Cu-ZrO2 catalysts for water-gas-shift reaction at low temperatures", Catal. Letters, Vol. 105, 2005, pp. 157-161, doi: https://doi.org/10.1007/s10562-005-8685-6.
  35. C. H. Jeong, H. J. Byeon, W. J. Jang, K. W. Jeon, and D. W. Jeong, "The optimization of Nb loading amount over Cu-Nb-CeO2 catalysts for hydrogen production via the low-temperature water gas shift reaction", Int. J. Hydrogen Energy, Vol. 45, No 6, 2020, pp. 9648-9657, doi: https://doi.org/10.1016/j.ijhydene.2020.01.198.
  36. Z. Minghui and I. E. Wachs, "Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: a review", ACS Catalysis, Vol. 6, 2016, pp. 722-732, doi: https://doi.org/10.1021/acscatal.5b02594.
  37. J. O. Shim, H. S. Na, S. Y. Ahn, W. J. Jang, H. S. Roh, "An optimization of aging time for low-temperature water-gas shift over Cu-Zn-Al catalyst", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 103-110, doi: https://doi.org/10.7316/KHNES.2019.30.2.103.
  38. S. Y. Yoo, H. M. Kim, B. J. Kim, W. J. Jang, and H. S. Roh, "The effect of La2O3 loading on the performance of Ni-La2O3-Ce0.8Zr0.2O2 catalysts for steam reforming of methane", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp. 2-4, doi: https://doi.org/10.7316/KHNES.2018.29.5.419.
  39. D. W. Jeong, H. S. Potdar, and H. S. Roh, "Comparative study on nano-sized 1 wt% Pt/Ce0.8Zr0.2O2 and 1 wt% Pt/Ce0.2Zr0.8O2 catalysts for a single stage water gas shift reaction", Catal. Letters, Vol. 142, 2012, pp. 439-444, doi: https://doi.org/10.1007/s10562-012-0786-4.
  40. D. W. Jeong, H. S. Potdar, K .S. Kim, and H. S. Roh, "The effect of sodium in activity enhancement of nano-sized Pt/CeO2 catalyst for water gas shift reaction at low temperature", Bull. Korean Chem. Soc., Vol. 32, No. 10, 2011, pp. 3557-3558, doi: https://doi.org/10.5012/bkcs.2011.32.10.3557.
  41. V. Agarwal, S. Patel, and K. K. Pant,"H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: Transient deactivation kinetics modeling", Appl. Catal. A Gen., Vol. 279, No. 1-2, 2005, pp. 155-164, doi: https://doi.org/10.1016/j.apcata.2004.10.026.
  42. H. B. Im, S. J. Kwon, C. K. Byun, H. S. Ahn, K. Y. Koo, W. L. Yoon, and K. B. Yi, "Effect of support geometry on catalytic activity of Pt/CeO2 nanorods in water gas shift reaction", Trans Korean Hydrog New Energy Soc, Vol. 25, No. 6, 2014, pp. 577-585, doi: https://doi.org/10.7316/khnes.2014.25.6.577.
  43. J. H. Park, J. H. Baek, G. H. Jo, H. U. Rasheed, and K. B. Yi, "Catalytic characteristic of water-treated Cu/ZnO/MgO/Al2O3 catalyst for LT-WGS reaction", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 95-10, doi: https://doi.org/10.7316/KHNES.2019.30.2.95.
  44. X. Zheng, X. Zhang, X. Wang, S. Wang, and S. Wu, "Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation", Appl. Catal. A Gen., Vol. 295, No. 2, 2005, pp. 142-149, doi: https://doi.org/10.1016/j.apcata.2005.07.048.
  45. D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, H. S. Roh, U. H. Jung, and W. L. Yoon, "Hydrogen production from low temperature WGS reaction on co-precipitated Cu-CeO2 catalysts: An optimization of Cu loading", Int. J. Hydrogen Energy, Vol. 39, No. 17, 2014, 9135-9142, doi: https://doi.org/10.1016/j.ijhydene.2014.04.005.
  46. M. Grilc and B. Likozar. "Levulinic acid hydrodeoxygenation, decarboxylation and oligmerization over NiMo/Al2O3 catalyst to bio-based value-added chemicals: modelling of mass transfer, thermodynamics and micro-kinetics", Chem. Eng. J., Vol. 330, 2017, pp. 383-397, doi: https://doi.org/10.1016/j.cej.2017.07.145.
  47. Z. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, "Study of oxygen vacancies in Ce0.9Pr0.1O2-δ solid solution by in situ X-ray diffraction and in situ raman spectroscopy", J. Phys. Chem. C, Vol. 111, No. 50, 2007, pp. 18695-18702, doi: https://doi.org/10.1021/jp0759776.
  48. M. Shen, L. Lv, J. Wang, J. Zhu, Y. Huang, and J. Wang, "Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction", Chem. Eng. J., Vol. 255, 2014, pp. 40-48. doi: https://doi.org/10.1016/j.cej.2014.06.058.
  49. L. Qi, Q. Yu, Y. Dai, C. Tang, L. Liu, H. Zhang, F. Gao, L. Dong, and Y. Chen, "Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation", Appl. Catal. B Environ., Vol. 119-120, 2012, pp. 308-320, doi: https://doi.org/10.1016/j.apcatb.2012.02.029.
  50. H. Guan, J. Lin, B. Qiao, S. Miao, A. Q. Wang, X. Wang, and T. Zhang, "Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction", AIChE Journal, Vol. 63, No. 6, 2017, pp. 2081-2088, doi: https://doi.org/10.1002/aic.15585.