DOI QR코드

DOI QR Code

Ni Catalyst Properties for Ammonia Reforming: Comparison of Ni Content and Space Velocity

암모니아 개질에 대한 Ni 촉매 특성: Ni 함량과 공간속도 비교

  • WOO, JINHYEOK (Major in Applied Chemistry, Kyungpook National University) ;
  • KIM, TAEYOUNG (Major in Applied Chemistry, Kyungpook National University) ;
  • KIM, JU EON (Major in Applied Chemistry, Kyungpook National University) ;
  • CHO, BYUNGOK (Wonik Materials Co, Ltd.) ;
  • JUNG, SUKYONG (Wonik Materials Co, Ltd.) ;
  • PARK, SAEMI (Wonik Materials Co, Ltd.) ;
  • LEE, SOOCHOOL (Major in Applied Chemistry, Kyungpook National University) ;
  • KIM, JAECHANG (Major in Applied Chemistry, Kyungpook National University)
  • 우진혁 (경북대학교 응용화학공학부) ;
  • 김태영 (경북대학교 응용화학공학부) ;
  • 김주언 (경북대학교 응용화학공학부) ;
  • 조병옥 ((주)원익머트리얼즈) ;
  • 정석용 ((주)원익머트리얼즈) ;
  • 박새미 ((주)원익머트리얼즈) ;
  • 이수출 (경북대학교 응용화학공학부) ;
  • 김재창 (경북대학교 응용화학공학부)
  • Received : 2021.11.24
  • Accepted : 2021.12.20
  • Published : 2021.12.30

Abstract

A reforming catalyst for hydrogen production from ammonia is being studied. Non-novel metal based Ni catalysts for use in ammonia reforming processes are being developed. In this study, the ammonia reforming characteristics according to Ni content of the alumina pellet supported catalyst in the mid-temperature region were investigated under different space velocity. 20 Ni and 3,000 h-1 showed the best catalytic activity with ammonia conversion of 63% among all conditions.

Keywords

Acknowledgement

본 연구는 (주)원익머트리얼즈의 "암모니아 개질을 위한 비금속계 촉매 개발" 과제로 수행되었으며, 이에 감사드립니다.

References

  1. F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: an overview", International Journal of Hydrogen Energy, Vol. 45, No. 7, 2020, pp. 3847-3869, doi: https://doi.org/10.1016/j.ijhydene.2019.12.059.
  2. Z. N. Anguita, D. G. Gusano, J. Dufour, and D. Lribarren, "Revisiting the role of steam methane reforming with CO2 capture and storage for long-tem hydrogen production", Science of the Total Environment, Vol. 771, 2021, pp. 145432, doi: https://doi.org/10.1016/j.scitotenv.2021.145432.
  3. Y. Yan, D. Thanganadar, P. T. Clough, S. Mukherjee, K. Patchigolla, V. Manovic, and E. J. Anthony, "Process simulations of blue hydrogen production by upgraded sorption enhanced steam methane reforming (SE-SMR) processes", Energy Conversion and Management, Vol. 222, 2020, pp. 113144, doi: https://doi.org/10.1016/j.enconman.2020.113144.
  4. J. M. Han, J. W. Kim, K. K. Bae, C. S. Park, S. G. Jeong, K. J. Jung, K. S. Kang, and Y. H. Kim, "Intermittent operation induced deactivation mechanism for HER of Ni-Zn-Fe electrode for alkaline electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 8-22, doi: https://doi.org/10.7316/KHNES.2020.31.1.8.
  5. S. G. Lee, Y. Choi, C. W. Park, H. S. Kim, Y. D. Lee, and Y. S. Kim, "A study on ammonia reforming catalyst and reactor design for 10 kW class ammonia-hydrogen dual-fuel engine", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 4, 2020, pp. 372-379, doi: https://doi.org/10.7316/KHNES.2020.31.4.372.
  6. S. F. Yin, B. Q. Xu, X. P. Zhou, and C. T. Au, "A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications", Applied Catalysis A, General, Vol. 277, No. 1-2, 2004, pp. 1-9, doi: https://doi.org/10.1016/j.apcata.2004.09.020.
  7. J. C. Ganley, F. S. Thomas, E. G. Seebauer, and R. I. Masel, "A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia", Catalysis Letters, Vol. 96, 2004, pp. 117-122, doi: https://doi.org/10.1023/B:CATL.0000030108.50691.d4.
  8. A. Boisen, S. Dahl, J. K. Norskov, and C. H. Christensen, "Why the optimal ammonia sythesis catalyst is not the optimal ammonia decomposition catalyst", Journal of Catalysis, Vol. 230, No. 2, 2005, pp. 309-312, doi: https://doi.org/10.1016/j.jcat.2004.12.013.