DOI QR코드

DOI QR Code

Nano-Morphology Design of Nickel Cobalt Hydroxide on Nickel Foam for High-Performance Energy Storage Devices

고성능 에너지 저장 소자를 위한 니켈 구조체에 담지된 니켈 코발트 수산화물의 나노 형상 제어

  • Shin, Dong-Yo (Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology) ;
  • Yoon, Jongcheon (Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology) ;
  • Ha, Cheol Woo (Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology)
  • 신동요 (한국생산기술연구원 접합적층연구부문) ;
  • 윤종천 (한국생산기술연구원 접합적층연구부문) ;
  • 하철우 (한국생산기술연구원 접합적층연구부문)
  • Received : 2021.11.12
  • Accepted : 2021.12.11
  • Published : 2021.12.27

Abstract

Recently, due to high theoretical capacitance and excellent ion diffusion rate caused by the 2D layered crystal structure, transition metal hydroxides (TMHs) have generated considerable attention as active materials in supercapacitors (or electrochemical capacitors). However, TMHs should be designed using morphological or structural modification if they are to be used as active materials in supercapacitors, because they have insulation properties that induce low charge transfer rate. This study aims to modify the morphological structure for high cycling stability and fast charge storage kinetics of TMHs through the use of nickel cobalt hydroxide [NiCo(OH)2] decorated on nickel foam. Among the samples used, needle-like NiCo(OH)2 decorated on nickel foam offers a high specific capacitance (1110.9 F/g at current density of 0.5 A/g) with good rate capability (1110.9 - 746.7 F/g at current densities of 0.5 - 10.0 A/g). Moreover, at a high current density (10.0 A/g), a remarkable capacitance (713.8 F/g) and capacitance retention of 95.6% after 5000 cycles are noted. These results are attributed to high charge storage sites of needle-like NiCo(OH)2 and uniformly grown NiCo(OH)2 on nickel foam surface.

Keywords

Acknowledgement

This work was supported by the Joint Program of Cooperation (2020K1A3A1A19087858) of the National Research Foundation (NRF) of Korea

References

  1. K. Keum, J. W. Kim, S. Y. Hong, J. G. Son, S.-S. Lee and J. S. Ha, Adv. Mater., 32, 2002180 (2020). https://doi.org/10.1002/adma.202002180
  2. D.-Y. Shin, J. S. Lee, B.-R. Koo and H.-J. Ahn, Chem. Eng. J., 412, 128547 (2021). https://doi.org/10.1016/j.cej.2021.128547
  3. D.-Y. Shin, K.-W. Sung and H.-J. Ahn, Appl. Surf. Sci., 478, 499 (2019). https://doi.org/10.1016/j.apsusc.2019.01.186
  4. Y.-G. Lee, H. Jang and G.-H. An, Korean J. Mater. Res., 30, 458 (2020). https://doi.org/10.3740/MRSK.2020.30.9.458
  5. D.-Y. Shin, G.-H. An and H.-J. Ahn, Ceram. Int., 44, 4883 (2018). https://doi.org/10.1016/j.ceramint.2017.12.078
  6. S. R. Ede, S. Anantharaj, K. T. Kumaran, S. Mishra and S. Kundu, RSC Adv., 7, 5898 (2017). https://doi.org/10.1039/C6RA26584G
  7. H. Jiang, T. Zhao, C. Li and J. Ma, J. Mater. Chem., 21, 3818 (2011). https://doi.org/10.1039/c0jm03830j
  8. W. He, G. Zhao, P. Sun, P. Hou, L. Zhu, T. Wang, L. Li, X. Xu and T. Zhai, Nano Energy, 56, 207 (2019). https://doi.org/10.1016/j.nanoen.2018.11.048
  9. C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu and X. Xu, Nanomaterials, 7, 41 (2017). https://doi.org/10.3390/nano7020041
  10. X. Chen, H. Li, J. Xu, F. Jaber, F. Musharavati, E. Zalnezhad, S. Bae, K. S. Hui, K. N. Hui and J. Liu, Nanomaterials, 10, 1292 (2020). https://doi.org/10.3390/nano10071292
  11. D.-Y. Sin, E.-H. Lee, M.-H. Park and H.-J. Ahn, Korean J. Mater. Res., 26, 393 (2016). https://doi.org/10.3740/MRSK.2016.26.7.393
  12. K. Patil, P. Babar and J. H. Kim, Korean J. Mater. Res., 30, 217 (2020). https://doi.org/10.3740/MRSK.2020.30.5.217
  13. A. Gowrisankar and T. Selvaraju, Langmuir, 37, 5964 (2021). https://doi.org/10.1021/acs.langmuir.1c00499
  14. Y. Zhang, Y. Yang, L. Yu, X. Meng, F. Wen, J. Zhang, H. Bi, X. Wang and J. Zhu, Mater. Chem. Phys., 218, 172 (2018). https://doi.org/10.1016/j.matchemphys.2018.07.047
  15. J. T. Zhang, S. Liu, G. L. Pan, G. R. Li and X. P. Gao, J. Mater. Chem. A, 2, 1524 (2014). https://doi.org/10.1039/C3TA13578K
  16. W. Wang, Z. Li, A. Meng and Q. Li, J. Solid State Electrochem., 23, 635 (2019). https://doi.org/10.1007/s10008-018-4149-y
  17. P. Yao, Z. Li, J. Zhu, X. Ran, Z. Shi and J. Zhu, J. Alloys Compd., 875, 160042 (2021). https://doi.org/10.1016/j.jallcom.2021.160042
  18. H.-G. Jo, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 29, 167 (2019). https://doi.org/10.3740/MRSK.2019.29.3.167