DOI QR코드

DOI QR Code

A Basic Study on the Generation of Tire & Road Wear Particles by Differences in Tire Wear Performance

타이어 마모성능 차이에 의한 타이어 마모입자 생성에 관한 기초 연구

  • 강태우 (금호타이어 중앙연구소) ;
  • 김혁중 (국립한경대학교 산학협력단)
  • Received : 2021.10.30
  • Accepted : 2021.11.22
  • Published : 2021.12.30

Abstract

In this study, in order to observe the change in the amount of Tire and Road Wear Particles and the ratio of tire components in it according to the tire wear resistance performance, carried out the evaluation by varying the vulcanization reaction design of the tire tread rubber. In addition, in order to improve the reliability of the evaluation of Tire and Road Wear Particles, the evaluation was performed indoor laboratory test equipment that simulates the condition on real driving to exclude various environmental influences including minerals, driver's habits, road surface, weather, tire structure and pattern designs. After the evaluation in closed space, it is estimated that the amount of collected Tire and Road Wear Particles is 84% compared to 100% of the tire and road wear loss weight, of which 96.4~97.7% was around the road and 2.3~3.6% was in the air. As a result of analy sis of the collected Tire and Road Wear particles, the tire component existed 63~75% in the Tire and Road Wear Particles depending on the wear resistance performance of the tire.

본 연구에서는 타이어 마모성능에 따른 타이어 마모입자 생성량 및 도로변 미세먼지 물질로써 타이어 소재와 도로 포장체 구성 성분의 정량화 분석을 위한 기초적 연구를 수행하였다. 이에, 타이어 트레드 부위 고무의 가황제/가황촉진제의 사용비를 달리하여 고무배합물을 제조하였다. 제조된 고무배합물의 물성 평가 결과 가황제/가황촉진제의 사용비가 증가할수록 가교밀도는 감소하여 마모성능이 불리한 조건임을 확인하였다. 밀폐된 실내 마모시험기에서도 가교밀도가 감소할수록 타이어 마모입자 생성량은 증가하였고, 손실량 100% 대비 84~86%의 타이어 마모입자를 포집할 수 있었다. 타이어 마모입자 중, 96.4~97.7% 분산, 2.3~3.6% 비산되는 것으로 평가되었다. 포집된 타이어 마모입자의 화학분석 결과, 타이어의 마모성능에 따라 타이어 마모입자 내 타이어와 도로 구성 성분 비율(63 : 37 → 75 : 25)이 변화됨을 확인 할 수 있었다. 본 연구에서는 타이어 마모성능에 따라 타이어 마모입자 발생에 대한 영향성을 관찰하기 위하여 실제 도로 현장의 조건 대비 가혹한 실내 마모환경으로부터 실험을 수행하였다. 이에 타이어 마모입자 발생이 도로 포장체 성분보다 더 높은 함량으로 분석되었다. 추후 실제 도로 환경에서 완제품 타이어와 실제 차량을 이용하여 자동차 도로변 미세먼지 저감을 위한 실증화 연구 방법을 도출할 계획이다.

Keywords

Acknowledgement

본 연구는 2021년도 국토교통부/국토교통과학기술진흥원의 연구비 지원으로 수행되었습니다. (과제번호 : 21POQW-B152342-03)

References

  1. Boonkerd, K., Deeprasertkul, C., Boonsomwong, K. (2016). Effect of sulfur to accelerator ratio on crosslink structure, reversion, and strength in natural rubber, Rubber Chemistry and Technology, 89(3), 450-464. https://doi.org/10.5254/rct.16.85963
  2. Gow, J.Y.E., Ku, P.X. (2021). The analysis of stone trapping in tire tread for various road conditions, MATEC Web of Conferences, 335, 03003.
  3. Hergenrother, W.L., Hilton, A.S. (2003). Use of χ as a function of volume fraction of rubber to determine crosslink density by swelling, Rubber Chemistry and Technology, 76(4), 832-845. https://doi.org/10.5254/1.3547775
  4. Jang, A.S. (2014). Impact of particulate matter on health, Journal of the Korean Medical Association, 57(9), 763-768. https://doi.org/10.5124/jkma.2014.57.9.763
  5. Joseph, A.M., George, B., KN,M., Alex, R. (2016). Effect of devulcanization on crosslink density and crosslink distribution of carbon black filled natural rubber vulcanizates, Rubber Chemistry and Technology, 89(4), 653-670. https://doi.org/10.5254/rct.16.84819
  6. Jung, U.Y., Choi, S.S. (2021). A variety of particles including tire wear particles produced on the road, Elastomers and Composites, 56(2), 85-91. https://doi.org/10.7473/EC.2021.56.2.85
  7. Kim, H.J., Jeon, I.H. (2000). Wear and frictional behavior of tire rubber, Polymer Science and Technology, 11(5), 592-602.
  8. Kreider, M.L., Panko, J.M., McAtee, B.L., Sweet, L. I., & Finley, B. L. (2010). Physical and chemical characterization of tire related particles: comparison of particles generated using different methodologies, Science of The Total Environment, 408(3), 652-659. https://doi.org/10.1016/j.scitotenv.2009.10.016
  9. McKenna, G.B., Flynn, K.M., Chen, Y. (1990). Swelling in crosslinked natural rubber: experimental evidence of the crosslink density dependence of χ, Polymer, 31(10), 1937-1945. https://doi.org/10.1016/0032-3861(90)90020-Y
  10. NIES. (2019). Air Environment Annual Report [in Korean].
  11. Oroumiyeh, F., Zhu, Y. (2021). Brake and tire particles measured from on-road vehicles: effects of vehicle mass and breaking intensity, Atmospheric Environment: X, 12, 100121. https://doi.org/10.1016/j.aeaoa.2021.100121
  12. Panko, J.M., Chu, J., Kreider, M.L., Unice, K.M. (2013). Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States, Atmospheric Environment, 72, 192-199. https://doi.org/10.1016/j.atmosenv.2013.01.040
  13. Panko, J.M., Hitchcock, K.M., Fuller, G.W., Green, D. (2019). Evaluation of tire wear contribution to PM2.5 in urban environments, Atmosphere, 10(2), 99. https://doi.org/10.3390/atmos10020099
  14. Panko, J.M., Kreider, M.L., McAtee, B.L., Marwood, C. (2013). Chronic toxicity of tire and road wear particles to water- and sediment- dwelling organisms, Ecotoxicology, 22(1), 13-21. https://doi.org/10.1007/s10646-012-0998-9
  15. Shin, D.C. (2007). Health effects of ambient particulate matter, Journal of the Korean Medical Association, 50(2), 175-182. https://doi.org/10.5124/jkma.2007.50.2.175
  16. Stalnaker, D.O., Turner, J.L. (2002). Vehicle and course characterization process for indoor tire wear simulation, Tire Science and Technology, 30(2), 100-121. https://doi.org/10.2346/1.2135248
  17. Tian, S., Liang, T., Li, K. (2019). Fine road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health, Environment International, 128, 201-209. https://doi.org/10.1016/j.envint.2019.04.050
  18. Tonegawa, Y., Sasaki, S. (2021). Development of tire wear particle emission measurements for passenger vehicles, Emission Control Science and Technology, 7(1), 56-62. https://doi.org/10.1007/s40825-020-00181-z
  19. Ulfah, I.M., Fidyaningsih, R., Rahayu, S., Fitriani, D.A., Saputra, D.A., Winarto, D.A., Wisojodharmo, L.A. (2015). Influence of carbon black and silica filler on the rheological and mechanical properties of natural rubber compound, Procedia Chemistry, 16, 258-264. https://doi.org/10.1016/j.proche.2015.12.053
  20. Yeo, M.J., Kim, Y.P. (2019). Trends of the PM10 concentrations and high PM10 concentration cases in Korea, Journal of Korean Society for Atmospheric Environment, 35(2), 249-264. https://doi.org/10.5572/kosae.2019.35.2.249