DOI QR코드

DOI QR Code

Development of a Customized Beacon Equipped with a Strain Gauge Sensor to Detect Deformation of Structure Displacement

구조물의 변위 변형 감지를 위한 변형률 센서를 장착한 커스터마이징 비콘 개발

  • Kim, Junkyeong (Safety Inspection for Infrastructure Laboratory, Advanced Institute of Convergence Technology)
  • 김준경 (차세대융합기술연구원 인프라안전진단연구실)
  • Received : 2021.03.30
  • Accepted : 2021.10.18
  • Published : 2021.10.30

Abstract

This study attempted to detect possible collapse and fire accidents in facilities for disaster monitoring of large facilities, and to develop a customized beacon to recognize the internal situation of an IoT-based facility when a disaster occurs. In the case of data measurement using the existing strain gauge sensor, the strain gauge sensor was connected by wire to measure it, but this study changed it to wireless so that the presence and absence of structural deformation can be monitored in real time. In this process, in order to use the Wheatstone bridge, a strain sensor module that can be connected to a customized beacon was manufactured, and a system configuration was conducted to remotely check the measurement data. To verify measurement data, 10 customized beacons and 2 gateways were installed on the 15th floor of the Advanced Institue of Convergence Technology, and as a result of analysis of measurement data, it was confirmed that the strain data values were distributed between 7 and 8.

본 연구에서는 대형 시설물의 재난 모니터링을 위해 시설물에서 발생 가능한 붕괴 및 화재 사고를 감지하고, 재난 상황 발생 시 IoT 기반의 시설물 내부 상황 인지를 위한 커스터마이징 비콘을 개발하고자 하였다. 기존 변형률 센서를 이용한 데이터 계측의 경우 유선으로 변형률 센서를 연결하여 계측하였지만, 본 연구는 이를 무선으로 변경하여 실시간으로 구조물 변형의 유·무를 모니터링이 가능하도록 하였다. 이 과정에서 휘트스톤 브릿지를 이용하기 위해 커스터마이징 비콘에 연결이 가능한 변형률 센서 모듈을 제작하였으며, 계측 데이터를 원격으로 확인하기 위한 시스템 구성을 진행하였다. 계측 데이터 검증을 위해 차세대융합기술연구원 15층 내에 10개의 커스터마이징 비콘과 2개의 게이트웨이를 설치하였으며, 계측 데이터 분석 결과 변형률 데이터값이 7~8 사이에 분포하는 것을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(국토교통부)의 재원으로 국토교통과학기술진흥원 국토교통기술촉진연구사업의 지원을 받아 수행된 연구임(20CTAP-C157163-01).

References

  1. Cho, J., Kim, S., Han, S., and Kang, Y. (2013), Estimation of Structural Deformed Shapes Using Limited Number of Displacement Measurements, Journal of Korean Society of Civil Engineers, 33(4), 1295-1302. https://doi.org/10.12652/Ksce.2013.33.4.1295
  2. Kang, L. H., Kim, D. K., Stephan, R., Horst, B., and Han, J. H. (2006), Dynamic Deformation Estimation of Structures Using Fiber Optic Strain Sensors, Journal of the Korean Society for Noise and Vibration Engineering, 16(2), 1279-1285. https://doi.org/10.5050/KSNVN.2006.16.12.1279
  3. Park, Y. S., Song, K. Y., Jin, S. S., Park, Y. H., and Kim, S. T. (2020), Optical Fiber-Based Hybrid Nerve Measurement System for Static and Dynamic Behavior of Structures, Journal of the Korean Institute for Structural Maintenance and Inspection, 24(2), 33-40.
  4. Roh, T. H., and Lee, J. C. (2003), Development on Management System of Structure's Displacement Using GPS, Journal of Korea Society for Geospatial Information Science, 11(2), 53-59.
  5. Cho, S. H., and Park, C. W. (2010), Development of Data Acquisition System for Strain Gauge Sensor, Journal of Industrial Technology, 30, 89-93.
  6. Choi, B. H., and Ryu, C. H. (2017), Understanding the Principles of Wheatstone Bridge Circuit, Journal of Korean Society of Explosives & Blasting Engineering, 35(2), 9-17.
  7. Lee, K. J., Jo, M., Fu, C., Eun, K., OH, H., Choa, S. H., and Yang, S. S. (2014), A Study on a Highly Sensitive Strain Sensor based on Rayleigh Wave, The Transactions of the Korean Institute of Electrical Engineers, 63(4), 495-501. https://doi.org/10.5370/KIEE.2014.63.4.495