DOI QR코드

DOI QR Code

Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon

야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성

  • 최영철 (가천대학교 토목환경공학과) ;
  • 유성원 (가천대학교 토목환경공학과)
  • Received : 2021.09.06
  • Accepted : 2021.09.24
  • Published : 2021.10.30

Abstract

Recently, a number of studies have been conducted on photocatalysts and adsorbents that can remove harmful substances to improve environmental problems related to fine particles. In this study, a porous foam composites were fabricated using palm-based activated carbon having a large amount of micro-pores and foam concrete with a significantly larger total pore volume compared to general construction materials. To evaluate the adsorption potential of fine particles, the pore structure of the foam composites were analyzed. For the analysis of the pore structure of the foam composite, BET and Harkins-jura theory were applied from the measured nitrogen adsorption isotherm. From the results of the analysis, the specific surface area and micro-pore volume of the foam composite containing activated carbon increased significantly compared to Plain. As thereplacement of activated carbon increased, the specific surface area and micro-pore volume of the foam composite tended to increase. It seems that the foam composite has high adsorption performance for gaseous fine particle precursor such as nitrogen oxides.

최근 미세먼지와 관련된 환경문제를 개선하기 위해 유해물질을 제거할 수 있는 광촉매와 흡착제에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 전체 공극량이 일반 건설재료에 비해 상당히 큰 폼 콘크리트에 다량의 마이크로 공극를 갖는 야자계 활성탄소를 이용해서 다공성 폼 복합체를 제작하였다. 미세먼지 흡착 가능성을 평가하기 위해 제작된 폼 복합체에 대해 공극 구조를 분석하였다. 폼 복합체의 공극구조 분석은 측정된 질소 흡착등온선으로부터 BET와 Harkins-jura이론을 적용하였다. 분석결과 활성탄소를 혼입한 폼 복합체의 비표면적과 마이크로 공극 부피가 Plain보다 크게 증가하였다. 활성탄소 혼입율이 증가할수록 폼 복합체의 비표면적과 마이크로 공극 부피가 증가하는 경향을 나타냈다. 이는 폼 복합체가 가스상의 미세먼지 전구물질 NOX에 대한 흡착성능이 높을 것으로 보인다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호21CTAP-C163949-01).

References

  1. Yavuz, R., Akyildiz, H., Karatepe, N., Cetinkaya, E. (2010), Influence of Preparation Conditions on Porous Structures of Olive Stone Activated by H3PO4, Fuel Processing Technology, 91, 80-87. https://doi.org/10.1016/j.fuproc.2009.08.018
  2. Hagemann, N., Spokas, K., Schmidt, H. P., Kagi, R., Bohler, M., Bucheli, T. (2018), Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon's ABCs, Water, 10(2), 182. https://doi.org/10.3390/w10020182
  3. Kang, K. H., Kam, S. K., Lee, S. W., Lee, M. G. (2007), Adsorption Characteristics of Activated Carbon Prepared From Waste Citrus Peels by NaOH Activation, Journal of Environmental Science International, 16, 1279-1285. https://doi.org/10.5322/JES.2007.16.11.1279
  4. Pap, S., Radonic, J., Trifunovic, S., Adamovic, D., Mihajlovic, I., Miloradov, M. V., Sekulic, M. T. (2016), Evaluation of the Adsorption Potential of Eco-friendly Activated Carbon Prepared from Cherry Krnels for the Removal of Pb2+, Cd2+ and Ni2+ from Aqueous Wastes, Journal of Environmental Management, 184, 297-306. https://doi.org/10.1016/j.jenvman.2016.09.089
  5. Son, H. K., Sivakumar, S., Rood, M. J., Kim, B. J. (2016), Electrothermal Adsorption and Desorption of Volatile Organic Compounds on Activated Carbon Fiber Cloth, Journal of Hazardous Materials, 301, 27-34. https://doi.org/10.1016/j.jhazmat.2015.08.040
  6. Choi, Y. J., Lee, Y. S., Im, J. S. (2018), Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties, Applied Chemistry for Engineering, 29, 318-324. https://doi.org/10.14478/ACE.2018.1013
  7. Yu, K. P., Lee, G. W. M., Huang, W. M., Yu, C. C., Yang, S. (2006), The Correlation between Photocatalytic Oxidation Performance and Chemical/physical Properties of Indoor Volatile Organic Compounds, Atmospheric Environment, 40, 375-385. https://doi.org/10.1016/j.atmosenv.2005.09.045
  8. Sn1eyink, V. L. (1990), Adsorption of Organic Compounds, In: F. W. Pontius (Ed.), Water Quality and Treatment, McGraw-Hill, New York, 781-875.
  9. Corcho-Corral, B., Olivares-Marin, M., Fernandez-Gonzalez, C., Gomez-Serrano, V., Marcias-Garcia, A. (2006), Preparation and Textural Characterization of Activated Carbon from Vine Shoots (Vitis vinifera) by H3PO4-chemical Activation, Applied Surface Science, 252, 5961-5966. https://doi.org/10.1016/j.apsusc.2005.11.007
  10. Wu, F. C., Tseng, R. L., Juang, R. S. (2005), Preparation of Highly Microporous Carbons from Fir Wood by KOH Activation for Adsorption of Dyes and Phenol from Water, Separation and Purification Technology, 47, 10-19. https://doi.org/10.1016/j.seppur.2005.03.013
  11. Mugahed Amran, Y. H., Farazadina, N., Abang Ali, A. A. (2015), Properties and Applications of Foamed Concrete; A Review, Construction and Building Materials, 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  12. Raj, A., Sathyan, D., Mini, K. M. (2019), Physical and Functional Characteristics of Foam Concrete: A Review, Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  13. Kunhanandan Nambiar, E. K., Ramamurthy, K. (2007), Air-void Characterization of Foam Concrete, Cement and Concrete Composites, 37, 221-230. https://doi.org/10.1016/j.cemconres.2006.10.009
  14. Sun, C., Zhu, Y., Guo, j., Zhang, Y., Sun, G. (2018), Effects of Foaming Agent Type on the Workability, Drying Shrinkage, Frost Resistance and Pore Distribution of Foamed Concrete, Construction and Building Materials, 186, 833-839. https://doi.org/10.1016/j.conbuildmat.2018.08.019
  15. Barrett, E. P., Joyner, L. G., Halenda, P. P. (1951), The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from nitrogen isotherms, Journal of the American Chemical Society, 73, 373-380. https://doi.org/10.1021/ja01145a126
  16. Lee, S. W., Min, K. M., Kim, S. D., Kim, D. K. (2015), Adsorption Characteristics of Hydrogen Sulfide on Iron-activated Carbon Composite Prepared by Ferric Nitrate and Ferric Chloride, Journal of Korea Society of Waste Management, 32, 772-779. https://doi.org/10.9786/kswm.2015.32.8.772
  17. Nan, D., Liu, J., Ma, W. (2015), Electrospun Phenolic Resin-based Carbon Ultrafine Fibers with Abundant Ultra-small Micropores for CO2 Adsorption, Chemical Engineering Journal, 276, 44-50. https://doi.org/10.1016/j.cej.2015.04.081
  18. Diez, N., Alvarez, P., Granda, M., Blanco, C., Santamaria, R., Menendez, R. (2015), CO2 Adsorption Capacity and Kinetics in Nitrogen-enriched Activated Carbon Fibers Prepared by Different Methods, Chemical Engineering Journal, 281, 704-712. https://doi.org/10.1016/j.cej.2015.06.126
  19. Langmuir, I. (1916), The Constitution and Fundamental Properties of Solids and Liquids Part I. Solids, Journal of the American Chemical Society, 38, 2221-2295. https://doi.org/10.1021/ja02268a002
  20. Brunauer, S., Emmett, P. H., Teller, E. (1938), Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60, 309-319. https://doi.org/10.1021/ja01269a023
  21. Harkins, W. D., Jura, G. (1944), Surfaces of Solids. XI. Determination of Decrease (π) of Free Surface Energy of a Solid by an Adsorbed Film, Journal of the American Chemical Society, 66, 1356-1362. https://doi.org/10.1021/ja01236a046
  22. Gregg, S. J., Sing, K. S. W. (1982), Adsorption, surface area and porosity, Second ed., Academic Press, London.