DOI QR코드

DOI QR Code

Study on the Applicability of Muography Exploration Technology in Underground Space Development

지하공간개발에서 뮤오그래피 탐사기술의 적용성에 관한 연구

  • 서승환 (한국건설기술연구원 지반연구본부) ;
  • 임현성 (한국건설기술연구원 지반연구본부) ;
  • 고영훈 (한국건설기술연구원 지반연구본부) ;
  • 곽기석 (한국건설기술연구원 지반연구본부) ;
  • 정문경 (한국건설기술연구원 지반연구본부)
  • Received : 2021.10.28
  • Accepted : 2021.11.10
  • Published : 2021.12.31

Abstract

Recently, the frequent occurrence of ground subsidence in urban areas has caused increasing anxiety in residents and incurred significant social costs. Among the causes of ground subsidence, the rupture of old water and sewer pipes not only halts the operation of the buried pipes, but also leads to ground and water pollution problems. However, because most pipes are buried after construction and cannot be seen with the naked eye, the importance of maintenance has underestimated compared to other structures. In recent years, integrated physical exploration has been applied to the maintenance of underground pipes and structures. Currently, to investigate the internal conditions and vulnerable portions of the ground, consolidated physical surveys are executed. Consolidated physical surveys are analysis techniques that obtain various material data and add existing data using multiple physical surveys. Generally, in geotechnical engineering, consolidated physical surveys including electrical and surface wave surveys are adopted. However, it is difficult to investigate time-based changes in under ground using these surveys. In contrast, surveys using cosmic-ray muons have been used to scan the inner parts of nuclear reactors with penetration technology. Surveys using muons enable real-time observation without the influence of vibration or electricity. Such surveys have great potential for available technology because of their ability to investigate density distributions without requiring as much labor. In this paper, survey technologies using cosmic ray muons are introduced, and the possibilities of applying such technologies as new physical survey technologies for underground structures are suggested.

최근 도시지역의 지반침하가 빈번하게 발생하여 주민들의 불안이 증가하고 막대한 사회적 비용이 발생하고 있다. 지반침하의 원인 중 노후 상하수도관의 파열은 매설관의 가동을 정지시킬 뿐만 아니라 지반 및 수질오염 문제를 야기한다. 그러나 대부분의 파이프는 시공 후 매설되어 육안으로 볼 수 없기 때문에 다른 구조물에 비해 유지보수의 중요성이 저평가되고 있다. 최근 몇 년 동안 지하 파이프 및 구조물의 유지 보수에 통합 물리적 탐사가 적용되었다. 현재 지하 공간 내부와 지반취약점을 조사하기 위해 통합물리조사를 실시하고 있다. 통합물리조사는 여러 가지 물리조사를 이용하여 다양한 물성자료를 얻고 기존 자료를 추가하는 분석기법이다. 일반적으로 지반 공학에서는 전기 및 표면파 조사를 포함한 통합 물리 조사가 채택되지만, 이러한 조사를 이용하여 지하 공간의 시간적 변화를 조사하는 것은 어렵다. 이에 반해 원자로 내부를 스캔하기 위한 투과기술로 우주선 뮤온을 이용한 탐사가 이루어지고 있다. 뮤온을 이용한 측량은 진동이나 전기의 영향 없이 실시간 관찰이 가능하다. 이러한 조사는 많은 노동력을 요구하지 않고 밀도 분포를 조사할 수 있기 때문에 활용 가능성 측면에서 큰 잠재력을 가지고 있다. 본 논문에서는 우주선 뮤온을 이용한 측량 기술을 소개하고, 이러한 기술을 지하 공간 및 지하 구조물에 대한 새로운 물리 측량 기술로 적용할 가능성을 제시한다.

Keywords

Acknowledgement

This research was supported by a grant from the project "Underground Space DB Accuracy Improvement and Underground Utilities Safe Management Technology", which was funded by the Korea Institute of Civil Engineering and Building Technology (KICT).

References

  1. Agostinelli S et al., 2003, GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, pp.250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  2. Alvarez LW et al., 1970, Search for hidden chambers in the pyramids. Sci New Ser 167, pp.832-839.
  3. Anderson, N.L., Croxton, N., Hoover, R., and Sirles, P., 2008, Geophysical methods commonly employed for geotechnical site characterization. In Transportation Research Circular (E-C130); Transportation Research Board: Washington, DC, USA, pp.1-21.
  4. Bonechi L, D'Alessandro R, and Giammanco A, 2019, Atmospheric muons as an imaging tool, Reviews in Physics 5, 100038. https://doi.org/10.1016/j.revip.2020.100038
  5. Bogdanova, L.N., Gavrilov, M.G., Kornoukhov, V.N., and Starostin, A.S., 2006, Cosmic muon flux at shallow depths underground, Physics of Atomic Nucl. 69, pp. 1293-1298. https://doi.org/10.1134/S1063778806080047
  6. Bugaev, E.V., Misaki, A., Naumov, V.A., Sinegofskaya, T.S., Sinegovsky, S.I., and Takahashi, N., 1998, Atmospheric muon flux at sea level, underground and underwater, Phys. Rev. D58, 05401.
  7. Das, B., and Sobhan, K., 2006, Principles of Geotechnical Engineering, 6th ed.; Nelson of Thomson: Toronto, ON, Canada, pp.629-650.
  8. Deng, L., and Cai, C. S., 2010, Bridge model updating using response surface method and genetic algorithm. Journal of Bridge Engineering 15(5), pp.553-564. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000092
  9. George EP., 1955, Cosmic rays measure overburden of tunnel. Com- monwealth Eng. 43, pp.455-457.
  10. Harry M. Jol, 2005, Ground penetrating radar theory and applications,. 2nd ed. CRC press.
  11. Jillings C., 2016, The SNOLAB science program. J. Phys. Conf. Ser., 718:062028.
  12. Kim Jung-Ho, Yi Myeong-Jong and, Cho Seong-Jun, 2005, Application of Highresolution Geoelectric Imaging Techniques to Geotechnical Engineering in Korea, Geosystem Engineering 8:2, pp.25-34. https://doi.org/10.1080/12269328.2005.10541233
  13. Kim, J.-H., Cho, S.-J., and Yi, M.-J., 2004, Borehole radar survey to explore limestone cavities for the construction of a highway bridge: Exploration Geophysics 35, 57, 7, pp.80-87.
  14. Kvasnicka, J., 1979, Dose rate and flux density of cosmic muons estimated by TLD method, Health Phys. 36, pp.521-524.
  15. Marteau, J., Gibert, D., Lesparre, N., Nicllin, F., Noli, P., and Giacoppo, F., 2012, Muons tomography applied to geoscience and volcanology, Nuclear Instruments and Method in Physics Rearch A.
  16. Minato,S., 1986, Bulk density estimates of buildings using cosmic rays, Appl. Radiat. Isot. 37, pp.941-946. https://doi.org/10.1016/0883-2889(86)90243-1
  17. Miyake, S., Narasimham, V. S., and Ramana Murthy, P. V., 1964, Cosmic-ray intensity measurements deep undergound at depths of (800-8400) m w.e., Nuovo Cim. 32, pp.1505-1523. https://doi.org/10.1007/BF02732788
  18. NCHRP, 2006, Risk-Based Management Guidelines for Scour at Bridges with Unknown Foundations.
  19. Neddermeyer S.H., and Anderson C.D., 1937, Note on the nature of cosmic ray particles. Phys. Rev., 51:884. https://doi.org/10.1103/PhysRev.51.884
  20. Olson, L., Jalinoos, F., and Aouad, M.F., 1998, Determination of Unknown Subsurface Bridge Foundations: A Summary of the NCHRP 21-5 Interim Report. Geotechnical Engineering Notebook, Geotechnical Guideline 16, Federal Highway Administration, Washington, D.C.Foundation Bridges.
  21. Park, C. B., Miller, R. D., and Xia, J., 1999, Multichannel analysis of surface waves. Geophysics 64, pp.800-808. https://doi.org/10.1190/1.1444590
  22. Pelekis, P.C., and Athanasopoulos, G.A., 2011, An overview of surface wave methods and a reliability study of a simplified inversion technique. Soil Dyn. Earthq. Eng. 31, pp.1654-1668. https://doi.org/10.1016/j.soildyn.2011.06.012
  23. Richart, F. E., Hall, J. R., and Woods, R. D., 1970, Vibrations of Soils and Foundations; Prentice Hall: Englewood Cliffs, NJ, USA.
  24. Sayed, M.S., Hisham N.S., and Pamela, R.M., 2011, Rational Alternative to Positive Discovery of Pile-Supported Bridges with Unknown Foundation Depth, Journal of Bridge Engineering 17(1), pp.173-181. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000231
  25. Sagar D., Dwivedi S.B., and Basudhar P.K., 2021, Electrical Resistivity Tomography in Geotechnical Engineering Applications. In: Patel S., Solanki C.H., Reddy K.R., Shukla S.K. (eds) Proceedings of the Indian Geotechnical Conference 2019. Lecture Notes in Civil Engineering 133, pp.157-167.
  26. Takahashi T, 2004, ISRM suggested methods for land geophysics in rock engineering. Int J Rock Mech Min Sci 41, pp.885-914. https://doi.org/10.1016/j.ijrmms.2004.02.009
  27. Takahashi T, Takeuchi T Sassa K, 2006, ISRM suggested methods for borehole geophysics in rock engineering. Int J Rock Mech Min Sci 43, pp.337-368. https://doi.org/10.1016/j.ijrmms.2005.09.003
  28. Tanaka HKM et al., 2009, Detecting a mass change inside a volcano by cosmic-ray muon radiography (muography): first results from measurements at Asama volcano. Jpn. Geophys. Res. Lett. 36:L17302. https://doi.org/10.1029/2009GL039448
  29. Wightman, W. Ed., Jalinoos, F., Sirles, P., and Hanna, K., 2003, Application of Geophysical Methods to Highway Related Problems. FHWA-IF-04-021.
  30. Wu YC et al., 2013, Measurement of cosmic ray flux in China JinPing underground laboratory. Chin Phys. C. 37:086001. https://doi.org/10.1088/1674-1137/37/8/086001