DOI QR코드

DOI QR Code

Comparison of capsule type resin modified glass ionomer porosity according to mixing methods

혼합방법에 따른 캡슐형 광중합글라스아이노머의 공극률 비교

  • Kim, Jung-min (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Jin-Woo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Kyung-Mo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Yoon (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Eung-Hyun (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Se-Hee (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University)
  • 김정민 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 김진우 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 조경모 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 이윤 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 김응현 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 박세희 (강릉원주대학교 치과대학 치과보존학교실)
  • Received : 2021.10.16
  • Accepted : 2021.11.09
  • Published : 2021.12.31

Abstract

Purpose: The purpose of this study was to evaluate the porosity of resin modified glass ionomer (RMGI) by different mixing methods. Materials and Methods: Five specimens were prepared for each groups according to capsules and mixing methods. Two RMGI capsule and two mixing machines were used for this study. One resin-modified glass ionomer cement is Fuji II LC (F2LC) and the other is Photac Fil Quick Aplicap (PFQ). For Mixing of RMGI capsule, Rotomix using rotating motion and CM-II using shaking motion were used. After measuring height, radius and mass of specimens, Density was calculated. And porosity was measured using micro-computed tomography (micro-CT). All data were statistically analyzed using T-test, two-way ANOVA to compare between groups at 95% significance level to evaluate the affect of capsule and mixing method on the porosity. Results: The porosity was observed in all specimens generally. And there is significant differece between porosities according to RMGI capsule and Mixing method. The porosity of PFQ was lower than that of F2LC and the porosity of Rotomix was lower than that of CM-II. Conclusion: There was a difference of porosity according to kind of capsules and mixing methods. When using same capsule, less porosity was observed on PFQ than F2LC. When using same mixing mehod, less porosity was observed on Rotomix than CM-II. Using mixing machine of same coporation as that of RMGI capsule did not lead to lower porosity. Therefore, Selecting optimal mixing machine is important.

목적: 본 연구의 목적은 혼합방법에 따른 여러 캡슐형 광중합글라스아이노머의 공극률을 비교 평가하는 것이다. 연구 재료 및 방법: 캡슐의 종류와 혼합방법을 달리하여 각각 5개의 시편을 제작한다. 광중합글라스아이노머 캡슐로는 Photac Fil Quick Aplicap (PFQ), Fuji II LC CASULE (F2LC)을 사용하였다. 각 캡슐을 rotating 방식인 RotoMix와 shaking 방식인 CM-II로 혼합하였다. 각 시편의 무게와 높이, 반지름을 측정하여 밀도를 구하였다. 그 후 micro-computed tomography (micro-CT)로 스캔하여 시편의 장축을 따라 470개의 단면을 얻은 뒤 3D로 재구성하여 각 시편의 공극률을 측정하였다. 광중합글라스아이노머 캡슐의 종류와 혼합방법이 공극률에 미치는 영향을 평가하기 위하여 이원배치 분산분석(Two-way ANOVA)을 하였으며, 각 그룹에서의 유의성을 검증하기 위하여 95% 유의수준에서 독립표본 t 검정(Independent t-test)을 하였다. 결과: 광중합글라스아이노머 캡슐의 종류와 혼합 방법에 관계없이 모든 시편에 기포가 전반적으로 존재하였으며, 캡슐의 종류와 혼합방법에 따른 공극률에 통계적으로 유의한 차이가 있었다. PFQ보다는 F2LC에서 공극률이 높았으며, Rotomix 보다는 CM-II에서 공극률이 높았다. 결론: 광중합글라스아이노머 캡슐의 사용 시에 광중합글라스아이노머 캡슐의 종류와 혼합방법에 따라 공극률에 유의한 차이가 있었다. 동일한 혼합기계를 사용할 때 PFQ보다는 F2LC에서 공극률이 높으며, 동일한 캡슐을 사용할 때 Rotomix 보다는 CM-II에서 공극률이 높았다. RMGI 캡슐을 혼합할 때 같은 제조회사의 혼합기계를 선택하는 것이 더 적은 공극률을 유발하는 것은 아니므로 적절한 혼합기계의 선택을 하는 것이 중요하다.

Keywords

References

  1. Nicholson JW, Sidhu SK, Czarnecka B. Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials 2020;13:2510. https://doi.org/10.3390/ma13112510
  2. Al-Taee L, Deb S, Banerjee A. An in vitro assessment of the physical properties of manually-mixed and encapsulated glass-ionomer cements. BDJ Open 2020;6:12. https://doi.org/10.1038/s41405-020-0040-x
  3. Nomoto R, Komoriyama M, McCabe JF, Hirano S. Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dent Mater 2004;20:972-8. https://doi.org/10.1016/j.dental.2004.03.001
  4. Xie D, Brantley W, Culbertson B, Wang G. Mechanical properties and microstructures of glassionomer cements. Dent Mater 2000;16:129-38. https://doi.org/10.1016/S0109-5641(99)00093-7
  5. Bertenshaw BW, Piddock V. Porosity in water-based dental luting cements. J Mater Sci Mater Med 1993;4:415-7. https://doi.org/10.1007/BF00122201
  6. McCabe JF, Ogden AR. The relationship between porosity, compressive fatigue limit and wear in composite resin restorative materials. Dent Mater 1987;3:9-12. https://doi.org/10.1016/S0109-5641(87)80053-2
  7. Barralet J, Gaunt T, Wright AJ, Gibson IR, Knowles JC. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J Biomed Mater Res 2002;63:1-9. https://doi.org/10.1002/jbm.1074
  8. Sulaiman TA, Abdulmajeed AA, Altitinchi A, Ahmed SN, Donovan TE. Effect of resin-modified glass ionomer cement dispensing/mixing methods on mechanical properties. Oper Dent 2018;43:E158-65. https://doi.org/10.2341/17-166-l
  9. Malkoc MA, Sevimay M, Tatar I, Celik HH. Micro-CT detection and characterization of porosity in luting cements. J Prosthodont 2015;24:553-61. https://doi.org/10.1111/jopr.12251
  10. ISO Specifications 9917-1. Dentistry -Water-based cements- Part 1: Powder/liquid acid-base cements;2007.
  11. Al-Kadhim AHA, Abdullah H. Effect of Porosity on Compressive Strength of Resin Modified Glass Ionomer Luting Cements. IMJM 2018;17:33-40.
  12. Milutinovic-Nikolic AD, Medic VB, Vukovic ZM. Porosity of different dental luting cements. Dent Mater 2007;23:674-8. https://doi.org/10.1016/j.dental.2006.06.006
  13. Billington RW, Williams JA, Pearson GJ. Variation in powder/liquid ratio of a restorative glassionomer cement used in dental practice. Br Dent J 1990;169:164-7. https://doi.org/10.1038/sj.bdj.4807311
  14. Covey DA, Ewoldsen NO. Porosity in manually and machine mixed resin-modified glass ionomer cements. Oper Dent 2001;26:617-23.
  15. Torres FFE, Guerreiro-Tanomaru JM, Bosso- Martelo R, Espir CG, Camilleri J, Tanomaru-Filho M. Solubility, porosity, dimensional and volumetric change of endodontic sealers. Braz Dent J 2019;30:368-73. https://doi.org/10.1590/0103-6440201902607
  16. Fleming GJ, Kenny SM, Barralet JE. The optimisation of the initial viscosity of an encapsulated glassionomer restorative following different mechanical mixing regimes. J Dent 2006;34:155-63. https://doi.org/10.1016/j.jdent.2005.05.008
  17. Fleming GJ, Zala DM. An assessment of encapsulated versus hand-mixed glass ionomer restoratives. Oper Dent 2003;28:168-77.
  18. Rupp D, Hermesch CB, Charlton DG. Effect of triturator speed variation on physical properties of encapsulated glass-ionomer luting cements. Oper Dent 1996;21:96-102.
  19. Mount GJ. An atlas of glass-ionomer cements. A clinician's guide. London; Martin Dunitz; 2002. p. 1-42.