DOI QR코드

DOI QR Code

무연 방사선 융합 차폐시트 단일 구조와 적층 구조의 비교를 통한 두께별 차폐성능 예측

Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets

  • 김선칠 (계명대학교 의용공학과)
  • Kim, Seon-Chil (Department of Biomedical Engineering, Keimyung University)
  • 투고 : 2020.11.03
  • 심사 : 2021.01.20
  • 발행 : 2021.01.28

초록

의료기관에서 최근 많이 사용되고 있는 친환경 소재 방사선 차폐체는 시트 형태로 제작되어 Apron의 재료로 활용되고 있다. 친환경 Apron의 차폐성능은 납당량을 기준으로 제시되고 있으며, 납당량은 0.25~0.50mmPb로 제시되고 있다. 납이 주재료 사용되는 차폐체인 경우 납의 우수한 가공성으로 인해 두께로 차폐성능을 조절할 수 있다. 그러나 친환경 차폐시트는 차폐재료의 함량, 베이스 재료인 고분자 물질의 물성, 공정과정의 기술적 차이에 따라 차폐성능이 변화되어 두께 기준의 차폐성능을 제어하기가 어렵다. 본 연구에서는 이러한 문제점을 해결하고자 두께를 기준으로 차폐시트를 제작하여 차폐성능을 평가, 비교하였다. 동일한 시트 제작공정을 제시하여 두께를 제어할 수 있는 캘린더 공정의 압연 기술을 적용하였고 여러층의 적층 구조와 단일 구조로 제작된 두 시트의 두께별 차폐성능을 비교하여 5%대의 차이를 관찰하였다. 그 결과 여러 층으로 차폐한 적층 구조 차폐시트가 더 효과적임을 증명하는 동시에 두께 중심의 차폐성능의 가능성을 제시하였다.

Radiation shielding of affinity material, which is widely used in medical institutions, is made in sheet form and is mainly applied to apron. Shielding performance is presented based on lead equivalent, and is presented as 0.25-0.50mmPb. In the case of shielding materials where lead is used as the main material, the shielding performance can be adjusted by thickness due to the excellent machinability of lead. However, eco-friendly shielding sheets are difficult to control shielding performance based on thickness criteria as shielding performance varies depending on the content of shielding materials, the properties of polymeric materials that are base materials, and the technical differences in the process. In this study, shielding sheets were manufactured based on thickness to solve these problems and the shielding performance was compared in this study. As a result, it was shown that the laminated structure shielding sheet was more effective.

키워드

참고문헌

  1. S. C. Kim. (2018). Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties, Journal of the Korea Convergence Society, 9(2), 99-106. DOI : 10.15207/JKCS.2018.9.12.099
  2. Y. J. Heo, S. U. Yang & J. K. Park. (2020). A Study on the Non-Toxic Compound-based Multi-layered Radiation Shielding Sheet and Improvement of Properties, Journal of the Korean Society of Radiolgy, 14(2), 149-155. DOI : 10.7742/jksr.2020.14.2.149
  3. J. K. Park, I. H. Choi, H. H. Park, S. W. Yang, K. T. Kim & S. S. Kang. (2016). Design of Double Layer Shielding Structure using Eco-friendly Shielding Materials, Journal of the Korean Society of Radiology, 10(8), 559-563. DOI : 10.7742/jksr.2016.10.8.559
  4. H. Cetin, A. Yurt & S. H. Yuksel. (2016). The absorption properties of lead-free garments for use in radiation protection, Radiation Protection Dosimetry, 173(4), 1-6. DOI : 10.1093/rpd/ncw004
  5. S. H. Kim, Y. J. Kim & J. S. Kwak. (2013). Development and Radiation Shield effects of Dose Reduction Fiberfor Scatter ray in CT Exams, Journal of the Korea Academia-Industrial, 14(4), 1871-1876. DOI : 10.5762/KAIS.2013.14.4.1871
  6. C. I. Chang & C. Y. Boo. (1998). A Study on the Radiation Shielding of Heavyweight Concrete using Metal Aggregate. Jouranl of Architectural Institute of Korea Structure & Construction, 14(4), 361-367
  7. S. C. Kim & S. H. Cho. (2019). Analysis of the Correlation between Shielding Material Blending Characteristics and Porosity for Radiation Shielding Films, Applied sciences, 9(9), 1765. DOI : 10.3390/app9091765
  8. K. W. Kim, S. H. Choi, K. Y. Kim, I. P. Lee, S. G. Hwang & K. R. Dong. (2017). Performance Evaluation of Aprons according to Lead Equivalent and Form Types, Journal of Radiation Industry, 10(4), 219-225. https://doi.org/10.23042/RADIN.2016.10.4.219
  9. C. B. Kim, Y. K. Kim, H. B. Ku & K. S. Lee. (2004). Improvement of the shieldability and lightweight of a radiation protective apron, The Korean Institute of Electrical and Electronic Material Engineers, 105-110.
  10. M. Mirzaei, M. Zarrebini, A. Shirani, M. Shanbeh & S. Borhani. (2019). X-ray shielding behavior of garment woven with melt-spun polypropylene mono-filament, Powder Technology, 345(1), 15-25. DOI : 10.1016/j.powtec.2018.12.069
  11. Z. Lihua, Z. Maotang & C. Donglin. (1994). Effects of structure multiplicity on mechanism of radiation crosslinking of polymers, Radiar. fhys. Chem, 44(3), 303-308. DOI : 10.1016/0969-806X(94)90008-6
  12. J. W. Hong, D. H. Kim, S. W. Kim, S. H. Choi, G. E. Lee, H. K. Seo, S. H. Kim & Y. J. Lee. (2018). Effectiveness evaluation of self-produced micro- and nanosized tungsten materials for radiation shielding with diagnostic X-ray imaging system, Optik, 172, 760-765. DOI : 10.1016/j.ijleo.2018.07.107
  13. J. H. Yun, J. Hou, W. G. Jang, J. H. Kim & H. S. Byun. (2019). Preparation and Optimization of Composition of Medical X-ray Shielding Sheet Using Tungsten, Polymer(Korea), 43(3), 346-350. DOI : 10.7317/pk.2019.43.3.346
  14. N. Z. N. Azman, S. A. Siddiqui & I. M. Low. (2013). Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays, Materials Science and Engineering C 33, 4952-4957. DOI : 10.1016/j.msec.2013.08.023
  15. J. C. Lee & W. J. Kim. (2017). Mechanical Properties and Neutron Shielding Performance of Concrete with Amorphous Boron Steel Fiber, Journal of the Korea Institute of Building Construction, 17(1), 009-014. DOI : 10.5345/JKIBC.2017.17.1.009
  16. J. P. Yang, Z. K. Chen, G. Yang, S. Y. Fu & L. Ye. (2008). Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer, Polymer, 49, 3168-3175. DOI : 10.1016/j.polymer.2008.05.008