DOI QR코드

DOI QR Code

Formation Characteristics of Precipitated Calcium Carbonate by Carbonation Process

  • Kim, Chiho (Department of Material Science and Engineering, Pusan National University) ;
  • Seok, Mingwang (Department of Material Science and Engineering, Pusan National University) ;
  • Kim, Yangdo (Department of Material Science and Engineering, Pusan National University)
  • Received : 2020.11.26
  • Accepted : 2020.12.11
  • Published : 2021.01.27

Abstract

The characteristics and morphology of precipitated calcium carbonate (PCC) particles produced by carbonation process with various experimental conditions are investigated in this study. The crystal structures of PCC formed by carbonation process are calcite and aragonite. The crystal structure of PCC particles synthesized without adipic acid additive is calcite only, regardless of the reaction temperature. Needle-like shape aragonite phase started to form at reactor temperature of 80℃ with the adipic acid additive. Particle size of the single phase calcite PCC synthesized without adipic acid additive is about 1 ~ 3 ㎛, with homogenous distribution. The aragonite PCC also shows uniform size distribution. The reaction temperature and concentration of adipic acid additive do not show any significant effects on the particle size distribution. Aragonite phase grown to a large aspect ratio of needle-like shape showed relatively improved whiteness. The measured whiteness value of single calcite phase is about 95.95, while that of the mixture of calcite and aragonite is about 99.11.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. B. Feng, A. K. Yong and H. An, Mater. Sci. Eng. A, 445, 170 (2007). https://doi.org/10.1016/j.msea.2006.09.010
  2. K. S. Seo, C. Han, J. H. Wee, J. K. Park and J. W. Ahn, J. Cryst. Growth, 276, 680 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.416
  3. N. Passe-Coutrin, P. N'Guyen, R. Pelmard, A. Ouensanga and C. Bouchon, Thermochim. Acta., 1995, 265, 135 (1995). https://doi.org/10.1016/0040-6031(95)02405-Q
  4. H. Konno and Y. Nanri, Powder Technol., 129, 15 (2003). https://doi.org/10.1016/S0032-5910(02)00275-9
  5. J. G. Carmona, J. G. Morales, J. F. Sainz, E. Loste and R. R. Clememte, J. Cryst. Growth, 262, 479 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.003
  6. D. Chakraborty, V. K. Agarwal, S. K. Bhatia and J. Bellare, Ind. Eng. Chem. Res., 33, 2187 (1994). https://doi.org/10.1021/ie00033a024
  7. M. D. Strutz, J. C. Pflieger and P. A. Duncan, Pulp Pap. Can., 92, 39 (1991).
  8. S. Wachi and A. G. Jones, Chem. Eng. Sci., 46, 1027 (1991). https://doi.org/10.1016/0009-2509(91)85095-F
  9. K. Uebo, R. Yamazaki and K. Yoshida, Adv. Powder Technol., 3, 71 (1992). https://doi.org/10.1016/S0921-8831(08)60690-1
  10. J. Peric, M. Vucak and R. Krstulovic, Adv. Sci. Technol. 3B, 1245 (1995).
  11. H. Tanaka, H. Horiuchi and T. Ohkubo, Gypsum & Lime, 216, 314 (1988).
  12. RM Santos, P Ceulemans and T Van Gerven, Chem. Eng. Sci., 90, 6, 715 (2012).
  13. S. Goto, K. Suenaga, T. Kado and M. Fukuhara, J. Am. Ceram. Soc., 78, 2867 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb09057.x
  14. K. Sasaki, M. Hongo and M. Tsunekawa, Shigen-to-Sozai, 113, 12, 173 (1998).
  15. Z.Hu and Y.Deng, J. Colloid. Interface. Sci., 266, 359 (2003). https://doi.org/10.1016/S0021-9797(03)00699-4