DOI QR코드

DOI QR Code

Anti-Fogging, Photocatalytic and Self-Cleaning Properties of TiO2-Transparent Coating

  • Mavengere, Shielah (Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Jung-Sik (Department of Materials Science and Engineering, The University of Seoul)
  • Received : 2020.12.27
  • Accepted : 2021.01.11
  • Published : 2021.01.27

Abstract

Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2-sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 ℃. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 ℃ improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.

Keywords

Acknowledgement

This work was supported by the 2019 sabbatical year research grant of the University of Seoul.

References

  1. X. Hu, Y. Yu, Y. Wang, Y. Wang, J. Zhou and L. Song, Mater. Lett., 182, 372 (2016). https://doi.org/10.1016/j.matlet.2016.06.125
  2. H. Yaghoubi, N. Taghavinia and E. K. Alamdari, Surf. Coat. Technol., 204, 1562 (2010). https://doi.org/10.1016/j.surfcoat.2009.09.085
  3. H. M. Yadav and J.-S. Kim, J. Mater. Sci.: Mater. Electron., 27, 10082 (2016). https://doi.org/10.1007/s10854-016-5082-4
  4. H. K. Hakki, S. Allahyari, N. Rahemi and M. Tasbihi, Mater. Sci. Semicond. Process., 85, 24 (2018). https://doi.org/10.1016/j.mssp.2018.05.031
  5. A. Tricoli, M. Righettoni and S. E. Pratsinis, Nanotech Conf. Expo 2009, Vol 3, Tech. Proc., 3, 192 (2009).
  6. H. Sabbah, Mater. Express, 3, 171 (2013). https://doi.org/10.1166/mex.2013.1106
  7. R. Fateh, A. A. Ismail, R. Dillert and D. W. Bahnemann, J. Phys. Chem. C, 115, 10405 (2011). https://doi.org/10.1021/jp200892z
  8. T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald and J. T. Yates, J. Phys. Chem. B, 109, 15454 (2005). https://doi.org/10.1021/jp058101c
  9. S. Okunaka, H. Tokudome, Y. Hitomi and R. Abe, J. Mater. Chem. A, 3, 1688 (2015). https://doi.org/10.1039/C4TA04680C
  10. S. Morales-Torres, L. M. Pastrana-Martinez, J. L. Figueiredo, J. L. Faria and A. M. T. Silva, Environ. Sci. Pollut. Res., 19, 3676 (2012). https://doi.org/10.1007/s11356-012-0939-4
  11. C. Han, V. Likodimos, J. A. Khan, M. N. Nadagouda, J. Andersen, P. Falaras, P. R. Lombardi and D. D. Dionysiou, Environ. Sci. Pollut. Res., 21, 11781 (2014). https://doi.org/10.1007/s11356-013-2233-5
  12. V. B. Koli, S. D. Delekar and S. H. Pawar, J. Mater. Sci. Mater. Med., 27, 177 (2016).
  13. I. I. Kabir, L. R. Sheppard, R. Shamiri, P. Koshy, R. Liu, W. Joe, A. Le, X. Lu, W. -F. Chen and C. C. Sorrell, J. Mater. Sci., 55, 3774 (2020). https://doi.org/10.1007/s10853-019-04282-1
  14. F. Oshani, R. Marandi, S. Rasouli and M. K. Farhoud, Appl. Surf. Sci., 311, 308 (2014). https://doi.org/10.1016/j.apsusc.2014.05.059
  15. P. Dulian, W. Nachit, J. Jaglarz, P. Zieba, J. Kanak and W. Zukowski, Opt. Mater. (Amst)., 90, 264 (2019). https://doi.org/10.1016/j.optmat.2019.02.041
  16. P. Chevallier, S. Turgeon, C. Sarra-Bournet, R. Turcotte and G. Laroche, ACS Appl. Mater. Interfaces, 3, 750 (2011). https://doi.org/10.1021/am1010964
  17. S. Park, S. Park, D. H. Jang, H. S. Lee and C. H. Park, Mater. Lett., 180, 81 (2016). https://doi.org/10.1016/j.matlet.2016.05.114
  18. K. V. Radha, I. Regupathi, A. Arunagiri and T. Murugesan, Process Biochem., 40, 3337 (2005). https://doi.org/10.1016/j.procbio.2005.03.033
  19. I. Kartini and G. Q. Lu, Indonesian J. Chem., 5, 15 (2005). https://doi.org/10.22146/ijc.21833
  20. J. Spiridonova, A. Katerski, M. Danilson, M. Krichevskaya, M. Krunks and I. O. Acik, Molecules, 24, 4326 (2019). https://doi.org/10.3390/molecules24234326
  21. S. Nishimoto, S. Tomoishi, Y. Kameshima, E. Fujii and M. Miyake, J. Ceram. Soc. Jpn., 122, 513 (2014). https://doi.org/10.2109/jcersj2.122.513
  22. V. B. Koli, S. Mavengere and J.-S. Kim, Appl. Surf. Sci., 491, 60 (2019). https://doi.org/10.1016/j.apsusc.2019.06.123