DOI QR코드

DOI QR Code

Prepration and Properties of Blue Tungsten Oxide Nanopowders by High Energy Ball-Mill

고 에너지 볼밀을 이용한 Blue 텅스텐산화물 나노입자의 제조와 특성

  • Kim, Myung-Jae (Department of Organic Material & Fiber Engineering, Soongsil University) ;
  • Lee, Kwang-Seok (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University)
  • 김명재 (숭실대학교 유기신소재공학과) ;
  • 이광석 (강원대학교 신(기능)소재공학과) ;
  • 김경남 (강원대학교 신(기능)소재공학과)
  • Received : 2020.10.26
  • Accepted : 2020.12.15
  • Published : 2021.01.27

Abstract

The purpose of this study is to prepare WO3 nanopowders by high-energy milling in mixture gas (7 % H2+Ar) with various milling times (10, 30, and 60 min). The phase transformation, particle size and light absorption properties of WO3 nanopowders during reduction via high-energy milling are studied. It is found that the particle size of the WO3 decreases from about 30 ㎛ to 20 nm, and the grain size of WO3 decreases rapidly with increasing milling time. Furthermore, the surface of the particles due to the pulverization process is observed to change to an amorphous structure. UV/Vis spectrophotometry shows that WO3 powder with increasing milling times (10, 30, 60 min) effectively extends the light absorption properties to the visible region. WO3 powder changes from yellow to gray and can be seen as a phenomenon in which the progress of the color changes to blue. The characterization of WO3 is performed by high resolution X-ray diffractometry, Field emission scanning electron microscopy, Transmission electron microscopy, UV/Vis spectrophotometry and Particle size analysis.

Keywords

References

  1. R. Baetens, B. P. Jelle and A. Gustavsen, Sol. Energy Mater. Sol. Cells, 94, 87 (2010). https://doi.org/10.1016/j.solmat.2009.08.021
  2. M. Barawi, L. D. Trizio, R. Giannuzzi, G. Veramonti, L. Manna and M. Manca, ACS Nano, 11, 3576 (2017). https://doi.org/10.1021/acsnano.6b06664
  3. H. Long, W. Zeng and H. Zhang, J. Mater. Sci. Mater. Electron., 26, 4698 (2015). https://doi.org/10.1007/s10854-015-2896-4
  4. K. R. Locherer, J. Chrosch and E. K. H. Salje, Phase Transitions, 67, 51 (1998). https://doi.org/10.1080/01411599808219188
  5. R. Hurditch, Electrocomp. Sci. Tech., 3, 247 (1997). https://doi.org/10.1155/APEC.3.247
  6. C. J. Howard, V. Lica and K. S. Knight, J. Phys.: Condens. Matter, 14, 377 (2002). https://doi.org/10.1088/0953-8984/14/3/308
  7. M. C. Pantilimon, T. S. Kang and S. J. Lee, Sci. Adv. Mater., 9, 280 (2017). https://doi.org/10.1166/sam.2017.2563
  8. K. Hong, W. Yiu, H. Wu, J. Gao and M. Xie, Nanotechnology, 16, 1608 (2005). https://doi.org/10.1088/0957-4484/16/9/034
  9. A. A. Mohammad, Acta Phys. Pol. A, 116, 240 (2009). https://doi.org/10.12693/APhysPolA.116.240
  10. D. L. Zhang, Prog. Mater. Sci., 49, 537 (2004). https://doi.org/10.1016/S0079-6425(03)00034-3
  11. H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall. Trans. A., 21, 2333 (1990). https://doi.org/10.1007/BF02646980
  12. B. D. Hall, D. Zanchet and D. Ugarte, J. Appl. Cryst. 33, 1335 (2000). https://doi.org/10.1107/S0021889800010888
  13. D. T. Gillaspie, R. C. Tenent and C. Dillon, J. Mater. Chem., 20, 9585 (2010). https://doi.org/10.1039/c0jm00604a
  14. Y. Huang, J. Q. Dai, Z. P. Xie, T. Ma, J. L. Yang and J. T. Ma, J. Eur. Ceram. Soc., 23, 985 (2003). https://doi.org/10.1016/S0955-2219(02)00233-9
  15. V. Sepelak and K. D. Becker, J. Korean Ceram. Soc., 49, 19 (2012). https://doi.org/10.4191/kcers.2012.49.1.019
  16. Y. Li, D. Chen and R. A. Caruso, J. Mater. Chem. C, 4, 10500 (2016). https://doi.org/10.1039/C6TC03563A
  17. H. Takeda and K. Adachi, J. Am. Ceram. Soc., 90, 4059 (2007).
  18. A. Ikehata, T. Itoh and Y. Ozaki, Anal. Chem., 76, 6461 (2004). https://doi.org/10.1021/ac049003a