DOI QR코드

DOI QR Code

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials

압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성

  • Lee, Woong (School of Materials Science and Engineering, Changwon National University)
  • 이웅 (창원대학교 신소재공학부)
  • Received : 2020.12.01
  • Accepted : 2021.01.08
  • Published : 2021.01.27

Abstract

Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

Keywords

References

  1. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501
  2. C. W. Litton, D. C. Reynolds and T. C. Collins, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, p. 265, 1st ed., John Wiley & Sons, New York (2011).
  3. U. Ozgur, D. Hofstetter and H. Morkoc, Proc. IEEE, 98, 1255 (2010). https://doi.org/10.1109/JPROC.2010.2044550
  4. A. B. Djurisic, A. M. C. Ng and X. Y. Chen, Progr. Quant. Electron., 34, 191 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001
  5. S. Bagga, J. Akhtar and S. Mishra, AIP Conf. Proc., 1989, 020004 (2018).
  6. R. Zhu and R. Yang, Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing, p. 39, Springer Nature, Cham, Switzerland (2018).
  7. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nat. Nanotechnol., 5, 366 (2010). https://doi.org/10.1038/nnano.2010.46
  8. H. J. Lee, S. Y. Chung, Y. S. Kim and T. I. Lee, Nano Energy, 38, 232 (2017). https://doi.org/10.1016/j.nanoen.2017.05.053
  9. B. Kumar, K. Y. Lee, H. K. Park, S. J. Chae, Y. H. Lee and S. W. Kim, ACS Nano, 5, 4197 (2011). https://doi.org/10.1021/nn200942s
  10. M. Son, H. Jang, M.-S. Lee, T.-H. Yoon, B. H. Lee, W. Lee and M.-H. Ham, Adv. Mater. Technol., 3, 1700355 (2018). https://doi.org/10.1002/admt.201700355
  11. W. Lee, Korean J. Mater. Res., 28, 671 (2018). https://doi.org/10.3740/MRSK.2018.28.11.671
  12. H. D. Espinosa, R. A. Bernal and M. Minary-Jolandan, Adv. Mater., 24, 4656 (2012). https://doi.org/10.1002/adma.201104810
  13. J. Zhang, C. Wang and S. Adhikari, J. Appl. Phys., 114, 174306 (2013). https://doi.org/10.1063/1.4829277
  14. K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee and S.-W. Kim, Sci. Rep., 3, 2017 (2013). https://doi.org/10.1038/srep02017
  15. R. Araneo, F. Bini, M. Pea, A. Notargiacomo, A. Rinaldi, G. Lovat and S. Celozzi, IEEE Trans. Nanotechnol., 13, 724 (2014). https://doi.org/10.1109/TNANO.2014.2318137
  16. L. Serairi, D. Yu and Y. Leprince-Wang, Phys. Status Solidi C, 13, 1 (2016).
  17. M. L. James, G. M. Smith and J. C. Wolford, Vibration of Mechanical and Structural Systems, p. 44, 2nd ed., Harper & Row, New York (1989).
  18. W. H. H. Oo, L. V. Saraf, M. H. Engelhard, V. Shuttanandan, L. Bergman, J. Huso and M. D. McCluskey, J. Appl. Phys., 105, 013715 (2009). https://doi.org/10.1063/1.3063730
  19. K. Nakamura, S. Higuchi and T. Ohnuma, J. Appl. Phys., 119, 114102 (2016). https://doi.org/10.1063/1.4943937
  20. ABAQUS 2017, Dassault Systemes, Velizy-Villacoublay, France (2016).
  21. A. N. Cleland, Foundations of Nanomechanics, p. 223, Springer, Berlin (2003)
  22. R. D. Cook, Finite Element Modeling for Stress Analysis, p. 241, John Wiley & Sons, New York (1995).
  23. R. Garcia and R. Perez, Surf. Sci. Rep., 47, 197 (2002). https://doi.org/10.1016/S0167-5729(02)00077-8