DOI QR코드

DOI QR Code

Preparation and Gas Permeation Characteristics of Polyetherimide Hollow Fiber Membrane for the Application of Hydrogen Separation

수소분리를 위한 Polyetherimide계 고분자 중공사막의 제조 및 기체투과 특성

  • Kwon, Hyeon Woong (Department of Polymer Science & Engineering, School of Materials Science & Engineering, Gyeongsang National University) ;
  • Im, Kwang Seop (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Ji Hyeon (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Seong Heon (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Do Hyeong (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Polymer Science & Engineering, School of Materials Science & Engineering, Gyeongsang National University)
  • 권현웅 (경상국립대학교 고분자공학과) ;
  • 임광섭 (경상국립대학교 나노신소재융합공학과) ;
  • 김지현 (경상국립대학교 나노신소재융합공학과) ;
  • 김성헌 (경상국립대학교 나노신소재융합공학과) ;
  • 김도형 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 고분자공학과)
  • Received : 2021.12.19
  • Accepted : 2021.12.28
  • Published : 2021.12.31

Abstract

In this study, polyetherimide-based hollow fiber membranes were manufactured using the NIPS (nonsolvent induced phase separation) method. THF, Ethanol, and LiNO3 were used as additives to control the morphology of the PEI-hollow fiber membranes. Furthermore, for the development of a high hydrogen separation membrane, the spinning conditions were optimized through the characterization of SEM and gas permeance. As a result, as the content of THF increased, the hydrogen/carbon dioxide selectivity increased. However, the permeance decreased due to the trade-off relationship. When ethanol was added, a finger-like structure was shown, and when LiNO3 was added, a sponge structure was shown. In particular, in the case of a hollow fiber membrane with an optimized PDMS coating layer, the permeance was 40 GPU and the hydrogen/carbon dioxide selectivity was 5.6.

본 연구에서는 비용매 유도 상분리법을 이용하여 폴리에테르이미드 계열의 중공사형 분리막을 제조하였다. 제조된 중공사막의 모폴로지 조절을 위해 첨가제로는 THF, Ethanol, LiNO3를 사용하였다. 또한 높은 수소분리막의 개발을 위해 모폴로지와 기체투과성능을 특성평가를 통해 방사조건을 최적화하였다. 그 결과 THF의 함량이 증가할수록 수소/이산화탄소 선택도가 증가하였다. 하지만 trade-off 관계로 인하여 투과율은 감소하였다. Ethanol을 첨가하였을 때는 finger-like 구조를 나타냈고, LINO3를 첨가하였을 때 Sponge 구조를 보였다. 특히, PDMS 코팅층을 최적화한 중공사막의 경우, 투과율은 40 GPU, 수소/이산화탄소 선택도는 5.6을 나타냈다.

Keywords

References

  1. J. H. Bae, H. G. Seo, E. Y. Ahn, and J. W. Lee, "Patent Trend Analysis of Carbon Capture/Storage/Utilzation Technology", Econ. Environ. Geol., 50, 5, 389-400 (2017). https://doi.org/10.9719/EEG.2017.50.5.389
  2. A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, "On hydrogen and hydrogen energy strategies I: Current status and needs", Renew. Sust. Energ. Rev., 9, 3, 255-271 (2005). https://doi.org/10.1016/j.rser.2004.05.003
  3. S. K. Ryi, J. Y. Han, C. H. Kim, H. Lim, and H. Y. Jung, "Technical Trends of Hydrogen Production", Clean Tech., 23, 2, 121-132 (2017). https://doi.org/10.7464/KSCT.2017.23.2.121
  4. Y. H. Park, D. Lee, C. Kim, K. Kang, and Y. Choi, "Characteristics of LPG Fuel Reforming Utilizing Plasma Reformer", J. Korean Inst. Met. Mater., 16, 6, 17-22 (2012).
  5. H. K. Song, J. W. Choi, H. Lee, S. S. Kim, and B. K. Na, "Preparation of Synthesis Gas from Methane in a Capacitive rf Discharge", Clean Tech., 12, 3, 138-144 (2006).
  6. Y. N. Chun and S. C. Kim, "Production of hydrogen-rich gas from methane by thermal plasma reform", J Air Waste Manag Assoc, 57, 12, 1447-1451 (2007). https://doi.org/10.3155/1047-3289.57.12.1447
  7. S. Sircar and T. C. Golden, "Purification of hydrogen by pressure swing adsorption", Sep Sci Technol, 35, 5, 667-687 (2000). https://doi.org/10.1081/SS-100100183
  8. S. Sircar, "Production of hydrogen and ammonia synthesis gas by pressure swing adsorption", Sep Sci Technol, 25, 11-12, 1087-1099 (1990). https://doi.org/10.1080/01496399008051839
  9. R. Bhattacharyya, K. Bhanja, and S. Mohan, "Simulation studies of the characteristics of a cryogenic distillation column for hydrogen isotope separation", Int. J. Hydrog. Energy, 41, 9, 5003-5018 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.106
  10. A. Hasanoglu, I. Demirci, and A. Secer, "Hydrogen production by gasification of Kenaf under subcritical liquid-vapor phase conditions", Int. J. Hydrog. Energy, 44, 27, 14127-14136 (2019). https://doi.org/10.1016/j.ijhydene.2018.08.165
  11. Ozcan and A. N. Akin, "Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: an optimization study", Int. J. Hydrog. Energy, 44, 27, 14117-14126 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.211
  12. G. Solowski, M. S. Shalaby, H. Abdallah, A. M. Shaban, and A. Cenian, "Production of hydrogen from biomass and its separation using membrane technology", Renew. Sust. Energ. Rev., 82, 3152-3167 (2018). https://doi.org/10.1016/j.rser.2017.10.027
  13. Y. Li and T. S. Chung, "Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation", J. Membr. Sci., 308, 1-2, 128-135 (2008). https://doi.org/10.1016/j.memsci.2007.09.053
  14. J. H. Kim, J. W. Rhim, and S. B. Lee, "Research trend of membrane technology for separation of carbon dioxide from flue gas", Membr. J., 12, 3, 121-142 (2002).
  15. J. H. Kim, K. H. Kim, and S. Y. Nam, "Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications", Appl. Chem. Eng., 31, 5, 453-466 (2020). https://doi.org/10.14478/ACE.2020.1054
  16. E. Favre, "Comprehensive Membrane Science and Engineering", E. Drioli, L. Giomo and E. Fontananova, 159-167, Elsevier (2017).
  17. M. Maarefian, S. Bandehali, S. Azami, H. Sanaeepur, and A. Moghadassi, "Hydrogen recovery from ammonia purge gas by a membrane separator: A simulation study", Int, J. Energ. Res., 43, 14, 8217-8229 (2019).
  18. H. Z. Chen and T. Chung, "CO2-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance", Int. J. Hydrogen Energy, 37, 7, 6001-6011 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.124
  19. T. Graham, "On the absorption and dialytic separation of gases by colloid septa Part I.-Action of a septum of caoutchouc", J. Membr. Sci., 100, 1, 27-31 (1995). https://doi.org/10.1016/0376-7388(94)00231-M
  20. M. V. Goltsova, Y. A. Artemenko, G. I. Zhirov, and V. I. Zaitsev, "Video-investigation of reverse hydride transformation in the Pd-H system", Int. J. Hydrog. Energy, 27, 7-8, 757-763 (2002). https://doi.org/10.1016/S0360-3199(01)00104-5
  21. E. S. Ryi and J. S. Park, "Research trend of Pdbased hydrogen membrane", J. Ind. Eng. Chem., 14, 3, 46-53 (2011).
  22. S. I. Jeon, J. H. Park, and Y. T. Lee, "Fabrication of Pd/YSZ Cermet Membrane for Hydrogen Separation", Membr. J., 21, 2, 148-154 (2011).
  23. E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. C. Mitropoulos, and N. K. Kanellopoulos, "Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on MatrimidⓇ5218 precursor", J. Mater. Process. Technol., 186, 102 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.024
  24. M. K. Jeong and S. Y. Nam, "Reviews on Preparation and Membrane Applications of Polybenzimidazole Polymers", Membr. J., 26, 4, 253-265 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.253
  25. K. H. Seong, J. S. Song, H. C. Koh, S. Y. Ha, M. H. Han, and C. H. Cho, "Effect of Carbonization Conditions on Gas Permeation of Methyl Imide Based Carbon Molecular Sieve Hollow Fiber Membranes", Membr. J., 23, 5, 332-342 (2013).
  26. S. M. Lee and S. S. Kim, "Structural Changes of PVDF Membranes by Phase Separation Control", Korean. Chem. Eng. Res., 54, 1, 57-63 (2016). https://doi.org/10.9713/kcer.2016.54.1.57
  27. S. H. Kim, K. S. Im, J. H. Kim, H. C. Koh, and S. Y. Nam, "Preparation and Characterization of Nanofiltration Membrane for Recycling Alcoholic Organic Solvent", Membr. J., 31, 3, 228-240 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.228
  28. X. Y. Chen, S. Kaliaguine, and D. Rodrigue, "A Comparison between Several Commercial Polymer Hollow Fiber Membranes for Gas Separation", J. Membr. Sep. Technol., 6, 1, 1-15 (2017). https://doi.org/10.6000/1929-6037.2017.06.01.1
  29. W. I Son and B. S. Kim, "Study on the Effect of Non-Solvent Additive in the Preparation of the Poly(etherimide) Hollow Fiber Membrane", Korean J. Chem. Eng., 39, 4, 397-403 (2001).
  30. J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and Preparation of PEG-Polyimide Copolymer Asymmetric Flat Sheet Membranes for Carbon Dioxide Separation", Membr. J., 25, 6, 547-557 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
  31. Z. K. Xu, L. Q. Shen, Q. Yang, F. Liu, S. Y. Wang, and Y. Y. Xu, "Ultrafiltration hollow fiber membranes from poly(ether imide): preparation, morphologies and properties", J. Membr. Sci., 223, 1-2, 105-118 (2003). https://doi.org/10.1016/S0376-7388(03)00312-0
  32. S. Husain, "Mixed matrix dual layer hollow fiber membranes for natural gas separation", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta (2006).
  33. J. T. Chung, C. S. Lee, H. C. Koh, S. Y. Ha, S. Y. Nam, and W. J. Jo, "Polymeric Membrane Modules for Substituting the CO2 Absorption Column in the DME Plant Process", Membr. J., 22, 2, 142-154 (2012).
  34. T. S. Chung, S. K. Teoh, and X. Hu, "Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes", J. Membr. Sci., 133, 2, 161-1754 (1997). https://doi.org/10.1016/S0376-7388(97)00101-4
  35. J. M. Lee, J. H. Park, D. J. Kim, M. G. Lee, and S. Y. Nam, "Characterization and Preparation of Polyimide Copolymer Membranes by Non-Solvent Induced Phase Separation Method", Membr. J., 25, 4, 343-151 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.343
  36. Y. G Park and Y. S. Yang, "Resourcing of Methane in the Biogas Using Membrane Process", Clean Tech., 20, 4, 406-414 (2014). https://doi.org/10.7464/KSCT.2014.20.4.406