DOI QR코드

DOI QR Code

모유에서 분리한 Enterococcus faecalis의 다제내성 균에 대한 항용혈 및 항균 효과

Anti-Hemolytic and Antimicrobial Effects against Multidrug-Resistant Bacteria of Enterococcus faecalis Isolated from Human Breast Milk

  • 이은지 (경기대학교 대학원 대체의학과) ;
  • 이정은 (경기대학교 대학원 대체의학과) ;
  • 조소연 (배화여자대학교 식품영양학과) ;
  • 김수빈 (중앙대학교 식품영양학과) ;
  • 유두나 (경희대학교 생명공학원) ;
  • 국무창 (배화여자대학교 식품영양학과) ;
  • 김애정 (경기대학교 대체의학대학원)
  • Yi, Eun-Ji (Department of Alternative Medicine, Kyonggi University) ;
  • Lee, Jeong-eun (Department of Alternative Medicine, Kyonggi University) ;
  • Jo, So-Yeon (Department of Food and Nutrition, Baewha Women's University) ;
  • Kim, Soo-bin (Department of Food and Nutrition, Chung-Ang University) ;
  • Yu, Du-na (Department of Biotechnology, Kyung Hee University) ;
  • Kook, Moochang (Department of Food and Nutrition, Baewha Women's University) ;
  • Kim, Ae Jung (The Graduate School of Alternative Medicine, Kyonggi University)
  • 투고 : 2021.10.20
  • 심사 : 2021.11.22
  • 발행 : 2021.12.28

초록

본 연구에서는 국내 건강한 산모의 모유에서 분리한 E. faecalis BMSE-HMP 4주의 용혈여부와 다제내성 균에 대한 항용혈 효능 및 항균 효과를 확인하였다. 분리 균주의 효소 활성을 측정 결과, E. faecalis BMSE-HMP 4주는 지질에 대한 가수분해 효소인 esterase 및 esterase lipase에 대한 활성이 우수하였다. 용혈여부를 확인한 결과, 분리균 모두 용혈반응이 나타나지 않았다. 또한 용혈을 일으키는 다제내성 균주에 대한 항용혈 효능을 검토한 결과, S. aureus CCARM 3855에 대한 항용혈 효능은 BMSE-HMP002가 75.71 ± 10.00%로 가장 높았으며, E. coli DC 2 CCARM 0238과 P. aeruginosa CCARM 0223에 대한 항용혈 효능은 BMSE-HMP001이 각각 76.92 ± 2.99%와 87.93 ± 1.93%로 가장 높게 나타났다. 다제내성균 Staphylococcus spp., Escherichia spp., Pseudomonas spp., Salmonella spp., Klebsiella spp. 및 Enterobacter spp.에 대한 항균활성을 검토한 결과, E. faecalis BMSE-HMP 4주는 그람 양성균주와 그람 음성균주에서 모두 항균력을 보였으며, 분리균 4주 중에서는 BMSE-HMP001과 BMSE-HMP002가 가장 우수한 결과를 보였다. 본 연구에서는 모유유래 유산균 E. faecalis BMSE-HMP 4주의 안전성과 다제내성 균에 의한 용혈 및 항균 효과를 검토하여 유용 유산균으로써 가능성을 확인하였으며, Enterococcus 균주는 항생제 내성 유전자 및 독성 유전자가 없는 경우에 한하여 사용이 가능한 것으로 고시된 바와 같이 본 연구에서 분리한 모유유래 유산균 E. faecalis BMSE-HMP 4주의 항생제 내성 및 독성에 대한 추가적인 연구를 통해 안전성에 대한 입증이 필요할 것으로 생각된다.

In this study, the hemolysis of Enterococcus faecalis BMSE-HMP strains, isolated from human breast milk, was investigated, and the anti-hemolytic and antimicrobial effects on multidrug-resistant (MDR) bacteria were investigated. The enzyme activity of E. faecalis BMSE-HMP 4 strains was measured, and it was found that the activities of esterase and esterase lipase were the highest. In addition, no hemolytic reaction was observed in any of the isolates. Subsequently, the anti-hemolytic activity against MDR strains causing hemolysis was evaluated. E. faecalis BMSE-HMP002 had the highest anti-hemolytic activity against Staphylococcus aureus CCARM 3855 at 75.71 ± 10.00%. The anti-hemolytic activity against Escherichia coli DC 2 CCARM 0238 and Pseudomonas aeruginosa CCARM 0223 showed that the activity of BMSE-HMP001 was highest at 76.92 ± 2.99% and 87.93 ± 1.93%, respectively. Examination of the antimicrobial effects against the MDR bacteria Staphylococcus spp., Escherichia spp., Pseudomonas spp., Salmonella spp., Klebsiella spp., Enterobacter spp., and E. faecalis BMSE-HMP strains showed antimicrobial effects against both gram-positive and gram-negative strains. Breastfeeding delivers enterococci into the intestinal tract of newborns by lactation, and its usefulness is attracting attention as it has been reported that enterococci have a potential effect on neonatal immune development. In this study, the hemolytic and antimicrobial effects of E. faecalis BMSE-HMP strains on MDR bacteria were investigated, to confirm their potential as useful lactic acid bacteria. Additional studies on the antibiotic resistance and toxicity of the E. faecalis BMSE-HMP strains, isolated in this study, are necessary to prove it safe for use.

키워드

과제정보

This work has supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1FA105839).

참고문헌

  1. Park SH. 2018. Management of multi-drug resistant organisms in healthcare settings. J. Korean Med. Assoc. 1: 26-35. https://doi.org/10.5124/jkma.2018.61.1.26
  2. Kim TU, Kim DH, Kim YT. 2005. Antibiotic resistance patterns of Staphylococcus aureus and methicillin resistant S. aureus isolated from the specimen of elementary school students. J. Exp. Biomed. Sci. 11: 525-531.
  3. Olchowik-Grabarek E, Sekowski S, Bitiucki M, Dobrzynska I, Shlyonsky V, Ionov M, et al. 2020. Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci. Rep. 10: 11168. https://doi.org/10.1038/s41598-020-68030-1
  4. Vandenesch F, Lina G, Henry T. 2012. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors?. Front. Cell Infect. Microbiol. 2: 12.
  5. Kourtis AP, Sheriff EA, Weiner-Lastinger LM, Elmore K, Preston LE, Dudeck M, et al. 2020. Antibiotic multidrug resistance of Escherichia coli causing device-and procedure-related infections in the United States reported to the national healthcare safety network, 2013-2017. Clin. Infect. Dis. 73: e4552-e4559.
  6. Kim YA, Lee SS, Son YJ, Park YS. 2018. Epidemiology and clinical significance of microorganisms from bloodstream infections for the past 10 years. Korean J. Natl. Health Insurance Service Ilsan Hospital. 17: 1-7.
  7. Shim JO. 2012. Differential diagnosis of acute diarrheal disorders in children. J. Korean Med. Assoc. 55: 516-524. https://doi.org/10.5124/jkma.2012.55.6.516
  8. Kang CI, Kim JE, Park DW, Kim BN, Ha US, Lee SJ, et al. 2018. Guidelines for the antibiotic use in urinary tract infections. Infect. Chemother. 50: 67-100. https://doi.org/10.3947/ic.2018.50.1.67
  9. Teerapo K, Roytrakul S, Sistayanarain A, Kunthalert D. 2019. A scorpion venom peptide derivative BmKn-22 with potent anti-biofilm activity against Pseudomonas aeruginosa. PLoS One 14: e0218479. https://doi.org/10.1371/journal.pone.0218479
  10. Liu PV. 1974. Extracellular toxins of Pseudomonas aeruginosa. J. Infect. Dis. 130: 94-99. https://doi.org/10.1093/infdis/130.Supplement.S94
  11. Kim WS, Yang AR. 2016. Antibacterial activity by Lactobacillus bulgaricus SP5 against pathogenic bacteria. Korean J. Org. Agric. 24: 497-510. https://doi.org/10.11625/KJOA.2016.24.3.497
  12. Lee JH. 2020. Safety of the genus Enterococcus and the development of food fermentation starters in Korea: Current status and future steps. Korean J. Food Sci. Technol. 52: 11-18.
  13. Giraffa G. 2003. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215-222. https://doi.org/10.1016/S0168-1605(03)00183-1
  14. Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuilloley M, et al. 2018. Evaluation of probiotic properties and safety of Enterococcus faecium isolated from artisanal tunisian meat "Dried Ossban". Front. Microbiol. 9: 1685. https://doi.org/10.3389/fmicb.2018.01685
  15. Blessing EN, Chukwuemeka IS, David UC, Onuawuchi UG. 2020. Antibacterial properties of probiotics bacterial isolated from human breast milk. WNOFNS 29: 290-297.
  16. Martin R, Langa S, Reviriego C, Jimenez E, Marin ML, Olivares, et al. 2004. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci. Technol. 15: 121-127. https://doi.org/10.1016/j.tifs.2003.09.010
  17. Rahmani M, Saffari F, Aboubakri O, Mansouri S. 2020. Enterococci from breast-fed infants exert higher antibacterial effects than those from adults: A comparative study. Hum. Microbiome J. 17: 100072. https://doi.org/10.1016/j.humic.2020.100072
  18. Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, et al. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33: 282-291. https://doi.org/10.1016/j.fm.2012.10.005
  19. Bezerra Filho CM, Nascimento da Silva LC, Vanusa da Silva M, Lobner-Olesen A, Struve C, Krofelt KA, et al. 2020. Antimicrobial and antivirulence action of Eugenia brejoensis essential oil in vitro and in vivo invertebrate models. Front. Microbiol. 11: 424. https://doi.org/10.3389/fmicb.2020.00424
  20. Wiegand I, Hilpert K, Hancock RE. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2: 163-175. https://doi.org/10.1038/nprot.2007.521
  21. Bagci U, Togay SO, Temiz A, Ay M. 2019. Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol. 64: 735-750. https://doi.org/10.1007/s12223-019-00687-2
  22. Braiek OB, Smaoui S. 2019. Enterococci: Between emerging pathogens and potential probiotics. Biomed. Res. Int. 2019: 5938210.
  23. Oh YM, Kong HR, Jeong DW, Lee JH. 2020. Technological characteristics and safety of Enterococcus faecium isolates from Meju, a traditional Korean fermented soybean food. Microbiol. Biotechnol. Lett. 49: 255-263.
  24. Semedo T, Santos MA, Martins P, Lopes MFS, Marques JJF, Tenreiro R, et al. 2003. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in Enterococci. J. Clin. Microbiol. 41: 2569-2576. https://doi.org/10.1128/JCM.41.6.2569-2576.2003
  25. Furumura MT, Figueiredo PMS, Carbonell GV, Darini ALdaC, Yano T. 2006. Virulence-associated characteristics of Enterococcus faecalis strains isolated from clinical sources. Braz. J. Microbiol. 37: 230-236.
  26. Jeong MR, Jeong DW, Lee JH. 2015. Safety and biotechnological properties of Enterococcus faecalis and Enterococcus faecium isolates from Meju. Appl. Biol. Chem. 58: 813-820.
  27. Baccouri O, Boukerb AM, Farhat LB, Zebre A, Zimmermann K, Domann E, et al. 2019. Probiotic potential and safety evaluation of Enterococcus faecalis OB14 and OB15, isolated from traditional Tunisian testouri cheese and rigouta, using physiological and genomic analysis. Front. Microbiol. 10: 881. https://doi.org/10.3389/fmicb.2019.00881
  28. Schwan WR, Langhorne MH, Ritchie HD, Stover CK. 2003. Loss of hemolysin expression in Staphylococcus aureus agr mutants correlates with selective survival during mixed infections in murine abscesses and wounds. FEMS Immunol. Med. Microbiol. 38: 23-28. https://doi.org/10.1016/S0928-8244(03)00098-1
  29. Bhakdi S, Mackman N, Menestrina G, Gray L, Hugo F, Seeger W, et al. 1988. The hemolysin of Escherichia coli. Eur. J. Epidemiol. 4: 135-143. https://doi.org/10.1007/BF00144740
  30. May AK, Gleason TG, Sawyer RG, Pruett TL. 2000. Contribution of Escherichia coli alpha-hemolysin to bacterial virulence and to intraperitoneal alterations in peritonitis. Infect. Immun. 1: 176-186.
  31. Pakdeesiriwong N, Rangdist S, Chumkiew S, Jamklang M. 2020. Hemolytic activity inhibition of Staphylococcus aureus hemolysins by secreted molecules from Enterococcus faecalis strains R1, R3, and R7. SUT IVCST 28: 450-455.
  32. Vitkova A, Votava M. 2005. Inhibition of hemolytic activity of Staphylococcus aureus 3-hemolysin by an exosubstance produced by some Enterococcus faecalis strains. Epidemiol. Mikrobiol. Imunol. 54: 11-15.
  33. Moon BY, Lee SK, Park JH. 2006. Antibiotic resistant characteristics of Bifidobacterium from Korean intestine origin and commercial yogurts. Korean J. Food Sci. Technol. 38: 313-316.
  34. Shin EJ. 2017. Antimicrobials and antimicrobial resistant super-bacteria. Ewha Med. J. 40: 99-103. https://doi.org/10.12771/emj.2017.40.3.99
  35. Jung SE, Kim SH. 2015. Probiotic properties of lactic acid bacteria isolated from commercial raw Makgeolli. Korean J. Food Sci. Technol. 47: 44-50. https://doi.org/10.9721/KJFST.2015.47.1.44
  36. Park SY, Cho SA, Han NR, Lim SD. 2014. Physiological characteristics and anti-obesity effect of Enterococcus faecalis MD366 isolated from raw milk. Korean J. Dairy Sci. Technol. 32: 147-156.
  37. Hong SW, Bae HJ, Chang JH, Kim SY, Choi EY, Park BY, et al. 2013. Isolation and identification of bacteriocin-producing lactic acid bacteria. Korean J. Dairy Sci. Technol. 31: 153-159.