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Introduction

When given a choice between identical goods, no one

would purchase costlier commodities. Instead, a person

would select the cheapest option, as it would provide us

with the best value. This choice is a result of economic

behavior that manages scarce resources optimally to

maximize desire. In addition, such a rational choice

allows us to survive and prosper in a competitive envi-

ronment.

By the same token, bacteria are capable of adapting to

diverse environmental niches by optimizing the alloca-

tion of limited cellular resources. In nutrient-rich condi-

tions, microorganisms can increase ribosome content,

thus resulting in a higher ATP budget with larger gene

expression machineries [1−3]. Eventually, this contrib-

utes to maximizing cellular fitness. On the other hand,

when cells grow in a nutrient-poor medium, a minimum

fraction of cellular resources is allocated to maintain a

certain level of growth [4, 5]. This linear relationship

between the mass fraction of cellular components and

the growth rate indicates that bacteria control the use of

their cellular assets, which represent energy currency

and building blocks [5]. In other words, a bacterial cell

can be considered as a closed economic system [6].

Because of the cellular complexity, it is not straightfor-

ward to engineer a biological system with synthetic cir-

cuits in vivo for producing recombinant proteins. To

predict and engineer rational biological systems, it is

necessary to understand how cells manage limited cellu-

lar resources optimally.

Biological systems are composed of dynamic networks

that determine the gene expression level depending

upon both intracellular and extracellular cues [7−9].

Owing to the regulatory network of the gene expression

system, living organisms can synthesize only necessary

proteins in given conditions. This allows cells to reduce

the protein synthesis cost, which is defined as a reduced
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growth rate due to limited cellular resources with a

lower gene expression capacity [10, 11]. At the same

time, the cost and benefits of protein expression are also

well-adjusted in evolution. A previous study has shown

that half of the Escherichia coli proteome is not used in a

given condition [12]. As a result of the expression of

unnecessary proteins, the growth rate decreases;

however, this bet-hedging strategy can be potentially

useful under changing environments [13]. For instance, a

clonal E. coli population splits into growing and nongrow-

ing persister phenotypes after glucose-gluconeogenic

substrate shifts. While cells that grew fast on glucose

achieved a high gluconeogenic flux, the subpopulation

that was refrained from growth showed higher antibiotic

tolerance [14]. Bet-hedging is thus linked to survival

under conditions in which the specialization of parts of

the population can benefit the whole group. This means

that cells maximize their probability of survival and

reproduction by maintaining a certain level of phenotypic

diversity in a population at the expense of reducing the

gene expression capacity. The emergence of nongenetic

phenotypic heterogeneity is the result of the stochasticity

of gene expression, also known as “noise” in gene expres-

sion. This nongenetic phenotypic heterogeneity influ-

ences cell-to-cell phenotypic variations in populations,

and the stochasticity results from the low availability of

cellular components associated with the gene expression

hardware, including synthesis of RNA and proteins [15,

16]. Accordingly, cells need to exploit their resources eco-

nomically with respect to the tradeoff between resource

availability and growth. 

With respect to the gene expression system in a bacte-

rial cell, this review addresses current understanding of

cellular strategies for managing scarce resources and for

optimizing cellular fitness with respect to the gene

expression system. Moreover, the description below pro-

vides a guide for manipulating resource allocation for

diverse biotechnological purposes.

Operons and Their Regulatory Architec-
ture Confer Several Benefits

Many functionally related genes are grouped into

operons and are coregulated by particular cues in bacte-

ria. As a result of regulation, a single polycistronic

mRNA molecule can be transcribed from cluster genes,

which are governed by the same expression system. Due

to spatial organization of genes and an efficient mecha-

nism for activating/inhibiting grouped genes, cells can

achieve economic allocation of cellular resources. In

turn, synthesis of the right enzymes at the right time as

the investment step is a way to produce more cellular

assets, which appear as energy sources and building

blocks (Fig. 1A).

The best examples of these strategies are well

addressed in E. coli with lactose metabolism and trypto-

phan biosynthesis [17−19]. In the presence of lactose, the

promoter of the lac operon consisting of lacZ, lacY, and

lacA genes can be stimulated, which switches all of these

genes on. Also, Trp repressor prevents the synthesis of

enzymes responsible for tryptophan biosynthesis by

inhibiting the Trp operon when tryptophan is sufficient;

only when the cellular concentration of the amino acid

falls below a certain level does the repressor returns to

its inactive form, and the polycistronic Trp mRNAs are

transcribed [20]. These regulatory mechanisms indicate

that built-in programming enables cellular resources to

Fig. 1. Production process of cellular assets. (A) Bacterial cells
obtain energy and building blocks as revenues through catabolic
enzymes by spending protein synthesis costs. (B) The regulatory
network of the TOL system in P. putida mt-2. m-xylene can be
transformed into 3-methylbenzoate (3MBz) using the upper
operon, and the metabolite is further catabolized by the lower
operon and TCA cycle. Although o-xylene is partially cleaved
through the upper operon, it produces a dead-end metabolite.
(C) Relative expression profile of the TOL system responding to
m-xylene or o-xylene [29]. (D) m-xylene enables cells to yield
assets, whereas o-xylene does not provide any revenue. How-
ever, cells can limit losses due to the reduced activity of the
lower operon. 
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be spent conditionally for the synthesis of specific RNAs/

enzymes, and the switchable operation leads to the pro-

duction of larger cellular assets.

However, such an expression system achieves no

return on investment. This failure occurs when non-pro-

ductive substrates enhance the switch of metabolic sys-

tems. Although bacterial transcriptional factors are

robust and evolvable, they sense fake chemicals that do

not provide any returns. This aspect is observed in the

TOL system, which is encoded by the plasmid pWW0 of

Pseudomonas putida mt-2. This soil bacterium is capa-

ble of metabolizing m-xylene and other related aromat-

ics by using a set of enzymes encoded by “upper” and

“lower” plasmid-borne operons [21−23]. Although all the

responsible genes are co-transcribed in two different

polycistronic mRNAs, the transcriptional networks are

well-coordinated to activate both operons. For instance,

in the presence of m-xylene, XylR, which is the main

regulator of the TOL system, activates both the Pu

promoter (responsible for the upper pathway operon)

and the Ps promoter, which stimulates the expression of

the xylS gene. As a result, the XylS protein induces the

lower operon by activating the Pm promoter with its

effector 3-methylbenzoate (3MBz), an intermediate

metabolite of m-xylene biodegradation [24−27] (Fig. 1B).

Accordingly, the TOL system delivers revenues with the

aromatic compound through the two pathways, and the

profit can be considered the difference between the reve-

nue and the cost [28]. Given the regulatory network of

the TOL system, once the upper operon is activated, the

lower pathway is autonomously triggered [29]. A key

regulator of the TOL system, XylR can sense diverse

aromatic compounds, including toluene and o-xylene

[29−31], although the latter compound is a non-energy

producing substrate (Fig. 1C). However, this does not

mean that the fake substrate collapses the resource

management system in the cell. Instead, cells cope with

the risk and reduce loss by minimizing the synthesis

costs of catabolic enzymes. It was previously reported

that the expression level of the lower pathway decreased

in response to o-xylene [29], which can result in a

reduced operation cost of the TOL system [28] (Fig. 1D).

By the same token, the profit increases by expressing

only the lower operon to metabolize 3MBz. Accordingly,

cells can not only manage profit maximization but also

limit losses by taking advantage of non-continuous

operon structures and regulatory networks.

Organization of Macromolecules at the
Right Position is Advantageous for Carry-
ing out Various Functions Effectively

Spatial organization of macromolecules can provide an

extra layer for optimizing the use of resources, because

the physical arrangements of clustering of functionally

related molecules in a system generate efficient interac-

tions [32]. For instance, the expression flow of the xyl

genes of the TOL catabolic system is spatially organized

in P. putida [33, 34]. On the basis of spatial localization

of xyl transcripts with respect to cellular components,

including host chromosomal DNA, TOL plasmid, and

gene expression hardware, such as RNAP and ribo-

somes, it was demonstrated that the mRNAs were

neighbored but were not present on the TOL plasmid

and cellular nucleoid (Fig. 2A) [33]. In addition, the tran-

scripts were majorly concentrated on ribosome-rich

regions of the cell [33, 34]. The spatial organization of

macromolecules suggested that xyl mRNAs migrate

from their transcriptional sites to ribosomes for transla-

tion [33]. On the other hand, the architecture of gene

expression flow can be advantageous for the assembly of

cognate catabolic enzymes encoded by TOL operons for

the degradation of responsible aromatic compounds (Fig.

2A). This is because catabolic enzymes synthesized in

the cellular structure remain close to each other, which

Fig. 2. Spatial organization of cellular components. (A) Gene
expression machinery, such as RNAP and ribosomes, are com-
partmentalized. The TOL plasmid of P. putida resides close to
transcriptional regions (blue), whereas its transcripts migrate to
ribosome-rich sites (green); the products can be easily clus-
tered. This clustering can generate metabolic channeling,
which accelerates enzyme catalysis activities. (B) Proteins local-
ize at their functional cellular domains through RNA locomo-
tion mechanisms using signal receptor proteins and Zip-code
sequences.
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enables the formation of metabolic channeling, thus

accelerating catabolic activities [35].

Interestingly, many proteins localize at their func-

tional cellular domains through RNA targeting. It was

reported that Bacillus subtilis positioned ComE proteins

at septal and polar regions to develop efficient competence

of the cell [36]. Interestingly, comE mRNA accumulated

in the same subcellular region, where its coding protein

resided. It was revealed that this spatial distribution

was dependent on transacting factors, such as DivIVA

and ComN, which are involved in cell pole differentia-

tion and the regulation of competence gene expression,

respectively [36]. Also, polar localization of the flaA

mRNA, encoding the major flagellin, was detected in the

elongation of Campylobacter jejuni [37]. In addition to

such exemplary proteins, proteome localization is

corelated with RNA distribution at the genome-wide

level (Fig. 2B). Both approaches utilizing fluorescent in

situ hybridization with complex probe sets [38] and RNA

localization by fractionation and sequencing [39]

revealed that most mRNAs encoding membrane proteins

were preferentially positioned at the membrane. More-

over, mRNAs encoding cytoplasmic and polar proteins

were largely distributed throughout these respective cel-

lular regions [40]. It is known that the cis-acting

sequence in the transcript serves as a ZIP code [41] or

signal recognition particle [38] that can determine pro-

tein targeting in a particular region through RNA local-

ization. Although the molecular mechanisms of protein

localization have yet to be investigated, the spatial dis-

tribution of macromolecules to their operative positions

enables cells to carry out functions effectively.

Modulation of Proteome Partitioning is
Cost Effective for Protein Synthesis

Gene expression machineries including RNA poly-

merase and ribosomes are not abundant in bacterial

cells, and therefore, the expression of a particular gene

can affect the activity of another seemingly unconnected

gene [42−44]. This is mainly caused by the limited num-

ber of ribosomes and growing number of observations

that have shown that the accumulation of one gene prod-

uct led to a decrease in the expression of the other gene

in a circuit following a linear relationship [42−48]. This

tradeoff also appears with cellular proteomes. In E. coli,

more of the available cellular proteomes are allocated to

ribosome-associated fractions, as they grow fast in nutri-

ent-rich media [3, 49, 50]. However, cells needs to make

more metabolic proteins to earn cellular assets at the

expense of ribosome synthesis under a nutrient-limited

condition, thus resulting in slower growth [3, 49, 50]. On

this basis, the partition of cellular proteomes is linked

with ribosome synthesis and the production of nonribo-

somal proteins, and conditional distribution of cellular

proteome enables cells to allocate resources cost-effec-

tively, as the synthesis of ribosomes is energetically

costly [51, 52] (Fig. 3). How do they achieve an optimal

concentration of ribosomes, and what is the underlying

molecular mechanism?

The key source of the translational machineries is rrn

operons in bacteria, and E. coli carries seven copies of

the operon. Interestingly, an isogenic strain with higher

rrn operon numbers (9 and 10) showed a slower growth

rate as well as longer lag phase time, and the same

growth profile appeared in strains carrying either 5 or 6

rrn operon numbers in fluctuating, nutrient-rich condi-

tions [53]. These results suggest that evolutionary

tradeoffs in wild-type E. coli leads to a set optimal rRNA

operon number. Also, the ideal concentration of ribosomes

can be controlled by the intracellular alarmone [54−

58]. When amino acids or other nutrients are limited,

cells accumulate the alarmone guanosine tetra- or

penta-phosphate (p)ppGpp, which is synthesized by

Fig. 3. Tuning the allocation of cellular resources. Bacteria
can modulate the investment of cellular proteomes depending
on nutrient qualities. More number of proteomes are allocated
to ribosome-associated proteins (green boxes) under nutrient-
rich conditions to maximize cellular fitness. In contrast, cells
synthesize more metabolic proteins (yellow boxes) to obtain
energy at the expense of ribosome production under poor
nutrient conditions.  
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RelA and/ or SpoT proteins [54−58]. The alarmone then

inhibits the transcription of both rRNAs and ribosomal-

protein coding genes through direct interaction with

RNA polymerase [59]. In contrast, the concentration of

the (p)ppGpp decreases in modest growth conditions

with more favorable nutrients.

Remarkably, the translation elongation rate also con-

tributes to the cellular economy. It was recently reported

that glycerol-grown cells exhibited lower gene expres-

sion capacity compared to that in glucose, although the

same growth rate was set for both culture conditions [5].

Given that glycerol does not provide equal quality of

translational substrates, including amino acids relative

to glucose, the computational approach reasoned that

the mass fraction of ribosomes rises in resource produc-

tion to maintain the growth rate, thus resulting in a

lower elongation rate [5]. This observation strongly

demonstrates that a subtle interaction between the elon-

gation rate and ribosome concentration contributes cells

to exploit cellular resources, depending upon their envi-

ronments.

Conclusion

The transfer of genetic information plays a fundamen-

tal role in living organisms, and this is mainly achieved

by the gene expression system. Maintaining and operat-

ing the system economically is crucial for maximizing

cellular fitness. In this respect, bacteria possess several

strategies for the optimal allocation of cellular DNA

organization, and operon structures with regulatory net-

works enable the cell to reduce its operating costs for

synthesizing proteins; thus, they can achieve either

higher production or minimized losses in response to

energy producing substrates or fake substrates, respec-

tively. In addition, spatial distribution of cellular compo-

nents into functional domains contributes to efficient

and effective interactions among functionally related

molecules. Moreover, the cell is capable of modulating

the partition of cellular proteomes, depending upon

nutrient quality; therefore the cellular budget is used

economically. These findings guide better understanding

of such strategies with respect to the gene expression

system, which enables us to design rational DNA cir-

cuits, pathways, and a cellular chassis that support the

maximum expression of desired biologics. Furthermore,

manipulation of the allocation resource is crucial for

engineering living systems for advanced bacterial pro-

gramming.
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