DOI QR코드

DOI QR Code

Loading Rate Effect on the Lateral Response of H-Shape Steel Column

재하속도가 H-형강 기둥부재의 횡방향 거동에 미치는 영향

  • 박민석 (명지대학교 하이브리드구조실험센터) ;
  • 김철영 (명지대학교 토목환경공학과) ;
  • 한종욱 (명지대학교 하이브리드구조실험센터) ;
  • 채윤병 (서울대학교 건설환경공학부)
  • Received : 2021.04.16
  • Accepted : 2021.08.20
  • Published : 2021.12.01

Abstract

Dynamic response of structures can be evaluated experimentally by conducting cyclic loading tests. It has been known that steel materials are rate-dependent and the lateral response of a structure is significantly affected by the presence of axial force. However, the rate-dependency of steel column structures subjected to both axial and lateral loads has not been sufficiently studied yet due to the difficulty of controlling the axial force in a real-time manner during test. This study introduces an advanced way to apply the axial load in real-time to a column specimen using the adaptive time series (ATS) compensator and the flexible loading beam (FLB), where the H-shape steel columns made of SS275 are used for monotonic and cyclic loading tests with various loading rates with axial loads. The lateral strength and post-yield response of the steel columns are compared for each of monotonic and cyclic loading tests. The estimating equation of yield stress of various strain rate has proposed and finite element analysis were performed for comparison.

대부분 동적 성능 평가는 반복 가력 실험을 수행함으로써 구조물의 동적 응답을 평가할 수 있다. 일반적으로 강재는 재하속도 의존성 재료로 알려져 있으며 기둥 부재의 횡방향인 수평방향 가력 시 기둥 부재의 축력인 수직하중이 작용하면 부재의 응답에 영향을 미친다. 하지만, 강재 기둥 구조물의 실험 시 수평 및 수직하중을 동시에 제어하는 것이 어려워 관련 연구는 부족한 실정이다. 본 연구에서는 기둥 부재를 ATS Compensator와 FLB 시스템을 이용하여 수평 및 수직하중을 고속으로 제어하였다. 실험은 H-형 구조용 압연강재인 SS275을 이용하여 수직 하중을 제어하면서 여러 속도로 단조 및 반복 가력 실험을 수행하고 부재의 항복 하중을 비교하였다. 또한, 유한요소해석 시 재하속도에 따라 새로운 항복 응력을 제안하고 수치해석을 통해 비교하였다.

Keywords

Acknowledgement

본 논문은 국토교통부 국토교통기술촉진연구사업의 연구비지원(21CTAP-B132914-05)에 의해 수행되었으며 이에 감사드립니다.

References

  1. Bannantine, J. A., Comer, J. J. and Handrock, J. L. (1990). Fundamentals of metal fatigue analysis, 1st ed., Chapter 2, Strain-life, Prentice Hall, Englewood Cliffs, N.J., pp. 40-73.
  2. Boyce, B. L. and Dilmore, M. F. (2009). "The dynamic tensile behavior of tough, ultrahigh-strength steels at strain-rates from 0.0002 s-1 to 200 s-1." International Journal of Impact Engineering, Vol. 36, No. 2, pp. 263-271. https://doi.org/10.1016/j.ijimpeng.2007.11.006
  3. Chae, Y. B., Kazemibidokhti, K. and Ricles, J. M. (2013). "Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation." Earthquake Engineering and Structural Dynamics, Vol. 42, No. 11, pp. 1697-1715. https://doi.org/10.1002/eqe.2294
  4. Kabeyasawa, T., Kato, S., Sato, M., Kabeyasawa, T., Fukuyma, H., Tani, M., Kim, Y. S. and Hosokawa, Y. (2014). "Effects of bi-directional lateral loading on the strength and deformability of reinforced concrete walls with/without boundary columns." 10th U.S. National Conference on Earthquake Engineering, Anchorage, Alaska, USA.
  5. Kim, J. H., Kim, D. Y., Han, H. N., Barlat, F. and Lee, M. G. (2013). "Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling." Materials Science and Engineering A, Vol. 559, No. 222-231. https://doi.org/10.1016/j.msea.2012.08.087
  6. Marohnic, T., Basan, R. and Franulovic, M. (2015). "Evaluation of the possibility of estimating cyclic stress-strain parameters and curves from monotonic properties of steels." 3rd International Conference on Material and Component Performance under Variable Amplitude Loading, Vol. 2015, Prague, Czech Republic, pp. 277-284.
  7. Meyer, L. W. and Abdel-Malek, S. (2000). "Strain rate dependence of strength-differential effect in two steels." Journal de Physique IV France, Vol. 10, pp. Pr9-63-Pr9-68.
  8. Nguyen, N. V., Pham, T. H. and Kim, S. E. (2019). "Strain rate-dependent behaviors of mechanical properties of structural steel investigated using indentation and finite element analysis." Mechanics of Materials, Vol. 137.
  9. Park, H. G., Baek, J. W., Lee, J. H. and Shin, H. M. (2015). "Cyclic loading tests for shear strength of low-rise reinforced concrete walls with grade 550 MPa bars." ACI Structural Journal, Vol. 112, No. 3, pp. 299-310. https://doi.org/10.14359/51687406
  10. Yu, H. D., Guo, Y. J. and Lai, X. (2009). "Rate-dependent behavior and constitutive model of DP600 steel at strain rate from 10-4 to 10-3 s-1." Materials and Design, Vol. 30, No. 7, pp. 2501-2505. https://doi.org/10.1016/j.matdes.2008.10.001