DOI QR코드

DOI QR Code

Post-Fire Damage and Structural Performance Assessment of a Steel-Concrete Composite Bridge Superstructure Using Fluid-Structure Interaction Fire Analysis

FSI 화재해석을 이용한 강합성 교량 상부구조의 화재 후 손상 및 구조성능 평가

  • 윤성환 (한국도로공사 도로교통연구원) ;
  • 길흥배 (한국도로공사 도로교통연구원)
  • Received : 2021.03.31
  • Accepted : 2021.07.08
  • Published : 2021.12.01

Abstract

The fire damage and structural performance of a steel-concrete composite superstructure under a highway bridge exposed to fire loading was evaluated. To enhance the accuracy and efficiency of the numerical analysis, a proposed fluid-structure interaction fire analysis method was implemented in Ansys Fluent and Ansys Mechanical. The temperature distribution and performance evaluation of the steel-concrete composite superstructure according to the vertical distance from the fire source to the bottom flange were evaluated using the proposed analysis method. From the analysis, the temperature of the concrete slab and the bottom flange of the steel-concrete composite superstructure exceeded the critical temperature. Also, when the vertical distance from the fire source was 13 m or greater, the fire damage of the steel-concrete composite superstructure was found to within a safe limit.

본 논문은 교량 하부에서 발생된 화재에 대한 강합성 교량 상부구조의 화재손상 및 구조성능평가를 위한 수치해석적 연구이다. 수치해석의 정확성 및 효율성을 높이기 위해 구성재료의 비선형 열적·열역학적 특성이 고려된 유체-구조 연성 화재해석 기법이 제안되고, 각각 ANSYS FLUENT 및 Mechanical solver에 연결되어 해석이 수행된다. 이는, 실제 강합성 교량 화재사고와 비교·검증되며, 검증된 해석기법을 통해 화원에서 교량 하부 플랜지까지 이격거리에 따른 화재별 부재의 온도분포 및 구조성능이 평가된다. 해석결과, 강합성 교량 상부구조의 콘크리트 슬래브 및 강재 거더 하부 플랜지의 경우 실제 화재사고에 대하여 임계온도를 초과하였다. 또한, 화원 이격거리가 13 m 이상일 경우 유조차 화재사고에 대한 강합성 교량 구조물의 화재손상이 안전한 것으로 나타났다.

Keywords

References

  1. ANSYS (2007). ANSYS Release 11.0 documentation, ANSYS Inc., USA.
  2. ASTM E119-82 (2000). Standard methods of fire tests of building construction and materials, American Society for Testing and Materials, USA.
  3. Choi, J. H. (2008). Concurrent fire dynamics models and thermomechanical analysis of steel and concrete structures, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, USA.
  4. Croce, P. A. and Mudan, K. S. (1986). "Calculating impacts for large open hydrocarbon fires." Fire Safety Journal, Vol. 11, No. 1-2, pp. 99-112. https://doi.org/10.1016/0379-7112(86)90055-X
  5. EUROCODE 2 (2004). Design of concrete structures, part 1, 2: general rules, structural fire design, European Committee for Standardization.
  6. EUROCODE 4 (2005). Design of composite steel and concrete structures, part 1, 2: general rules, structural fire design, European Committee for Standardization.
  7. Huang, Z., Burgess, I. W. and Plank, R. J. (1999). "The influence of shear connectors on the behaviour of composite steel-framed buildings in fire." Journal of Constructional Steel Research, Vol. 51, No. 3, pp. 219-237. https://doi.org/10.1016/S0143-974X(99)00028-0
  8. Korea Expressway Corporation (KEC) (2011). Bucheon highway bridge fire restoration design and construction, Gimcheon, Korea (in Korean).
  9. Kim, W. S., Jeoung, C., Gil, H. B., Lee, I. K., Yun, S. H. and Moon, D. Y. (2016). "Fire risk assessment on the highway bridge in South Korea." Journal of the Transportation Research Board, Vol. 2551, pp. 137-145. https://doi.org/10.3141/2551-16
  10. Kodur, V. K. R. and Phan, L. (2007). "Critical factors governing the fire performance of high strength concrete systems." Fire Safety Journal, Vol. 42, No. 6-7, pp. 482-488. https://doi.org/10.1016/j.firesaf.2006.10.006
  11. Kodur, V., Gu, L. and Garlock, M. E. M. (2010). "Review and assessment of fire hazard in bridges." Journal of the Transportation Research Board, Vol. 2172, No. 1, pp. 2-29.
  12. Lie, T. T. and Irwin, R. J. (1995). "Fire resistance of rectangular steel columns filled with bar-reinforced concrete." Journal of Structural Engineer, Vol. 121, No. 5, pp. 797-805. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:5(797)
  13. Najjar, S. R. and Burgess I. W. (1996). "A nonlinear analysis for three-dimensional steel frames in fire conditions." Engineering Structures, Vol. 8, No. 1, pp. 77-89. https://doi.org/10.1016/0141-0296(95)00101-5
  14. NFPA 502 (2008). Standard for road tunnels, bridges, and other limited access highways, National Fire Protection Association.