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Tumor necrosis factor alpha (TNF-α) is a principal regulator of inflammation and immunity. The proinflammatory 
properties of TNF-α can be attributed to its ability to activate the enzyme cytosolic phospholipase A2 (cPLA2), which 
generates potent inflammatory lipid mediators, eicosanoids. L-glutamine (Gln) plays physiologically important roles in 
various metabolic processes. We have reported that Gln has a potent anti-inflammatory activity via rapid upregulation of 
mitogen-activated protein kinases (MAPKs) phosphatase (MKP)-1, which preferentially dephosphorylates the key pro-
inflammatory enzymes, p38 MAPK and cytosolic phospholipase A2 (cPLA2). In this study, we have investigated whether 
Gln could inhibit TNF-α-induced cPLA2 activation. Gln inhibited TNF-α-induced increases in cPLA2 phosphorylation 
in the lungs and blood levels of the cPLA2 metabolites, leukotrine B4 (LTB4) (lipoxygenase metabolite) and prostaglandin 
E2 (PGE2) (cyclooxygenase metabolite). TNF-α increased p38 and cPLA2 phosphorylation and blood levels of LTB4 and 
PGE2, which were blocked by the p38 inhibitor SB202190. Gln inhibited TNF-α-induced p38 and cPLA2 phosphorylation 
and production of the cPLA2 metabolites. Such inhibitory activity of Gln was no longer observed in MKP-1 small 
interfering RNA-pretreated animals. Our data indicate that Gln inhibited TNF-α-induced cPLA2 phosphorylation through 
MKP-1 induction/p38 inhibition, and suggest that the utility of Gln in inflammatory diseases in which TNF-α plays a 
major role in their pathogenesis. 
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INTRODUCTION 

 

TNF-α is produced mainly by monocytes and macro- 

phages, and is a key cytokine regulating inflammation and 

immunity (Taylor et al., 2004). Many studies have showed 

that TNF-α is a principal therapeutic target for many in- 

flammatory diseases (Kalliolias and Ivashkiv, 2016). TNF-α 

activates the pro-inflammatory enzyme, cytosolic phospho- 

lipase A2 (cPLA2) through increasing cPLA2 phosphorylation 

and causing the translocation of cPLA2 from perinuclear 

regions to the plasma membrane (Hoeck et al., 1993; 

Hirabayashi and Shimizu, 2000; Sapirstein and Bonventre, 

2000), which can explain the proinflammatory properties 

of TNF-α. TNF-α-uses a serial pathway involving ROS/ 

mitogen-activated protein kinase (MAPK)s/NF-κB/p300 

(Lee et al., 2013; Lin et al., 2016) for cPLA2 activation. 

cPLA2 is involved in the production of potent lipid inflam- 

matory mediator, eicosanoids such as platelet-activating 

factor (PAF), leukotrienes (LTs) (5-lipoxygenase products), 
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and prostaglandins (PGs) and thromboxane (cyclooxygenase 

products) via releasing arachidonic acid (for an overview, 

see Dennis et al., 2011). Studies using cPLA2 knock-out 

animals which display reduction in inflammatory and allergic 

responses indicate the key role of cPLA2 in inflammatory, 

cardiovascular and neurological diseases (Leslie, 2015). 

L-glutamine (Gln), a non-essential amino acid, is the 

most abundant amino acid in human body and used as an 

energy fuel in most cells (Fox et al., 1996; Encarnacion et 

al., 1998). Gln is an important molecule in the synthesis of 

peptides, nucleotide bases, neurotransmitters, and glutathione 

(Albrecht et al., 2010; Amores-Sanchez and Medina, 1999). 

Critically ill patients undergo Gln's alteration, which leads 

to muscle proteolysis activation, insulin resistance, and 

increased liver gluconeogenesis (Griffiths et al., 1997). Gln 

supplementation has been shown to decreases infectious 

complications and shortens hospitalization (Griffiths, 2003). 

We have reported that Gln exerts beneficial effects against 

several experimental inflammatory diseases (Kim et al., 

2006; Ko et al., 2008; Ayush et al., 2013; Im et al., 2018). 

Such effect of Gln was due to its ability to induce MAPK 

phosphatase-1 (MKP-1) protein (Ko et al., 2009), which 

dephosphorylates p38 and JNK (Franklin and Kraft, 1997; 

Hammer et al., 2006). As a result, MKP-1 inactivates cPLA2 

by dephosphorylating p38, as cPLA2 is one of p38 substrate 

(Su and Karin, 1996). Although we have reported MKP-1 

upregulation as the anti-inflammatory mechanism of Gln in 

many experimental inflammatory diseases, it is unknown 

whether the same mechanism will be operated in Gln in- 

hibition of the pro-inflammatory property of TNF. Therefore, 

in this study, we have investigated whether Gln could inhibit 

TNF-α-induced cPLA2 phosphoylation via MKP-1 induction 

and p38 inhibition. 

 

MATERIALS AND METHODS 

Animals 

Specific pathogen-free female C57BL/6 mice were ob- 

tained from Orient Bio (Seongnam, Gyounggi, Korea) and 

housed in clean, pathogen-free rooms in an environment 

with controlled temperature (23℃), humidity (55%), and a 

12 hr light/dark cycle. All mice were used at 6~7 weeks of 

age. All experiments were conducted in accordance with the 

guidelines of the Chonnam National University Institutional 

Animal Care and Use Committee (Approval No. CNU 

IACUC-YB-2018-05). We included 4 mice/group/time point 

/experiment. 

Reagents 

L-Gln (biotechnology performance certified, G-8540) 

was purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Gln was dissolved in sterilized distilled water to reach 4%, 

the saturated concentration at room temperature, Gln (750 mg 

/kg) was administered to animals via intraperitoneally (i.p.). 

Control mice received vehicle only. Recombinant mouse 

TNF-α was purchased from R&D System (Minneapolis, MN, 

USA). The p38 MAPK inhibitor SB202190 was obtained 

from Calbiochem (San Diego, CA, USA). SB202190 (5 mg 

/kg i.p.) was injected twice 48 hr and 24 hr (Lee et al., 

2012; Kim et al., 2021) before TNF-α (25 μg/kg) injection 

(Jia et al., 2013). Antibodies against phospho-p38, phospho-

cPLA2, and MKP-1 were purchased from Cell Signaling 

Technology (Danvers, MA, USA). 

Cell culture 

Murine alveolar macrophage cells, MH-S (ATCC CRL-

2019), were maintained in RPMI 1640 containing 2 mM of 

Gln (Life Technologies, Grand Island, NY) supplemented 

with 10% fetal bovine serum and 1% antibiotics (Invitrogen, 

Carlsbad, CA). The cells were maintained at 37℃ in a 

humidified atmosphere at 5% CO2. Cell passages, between 

4~20, used throughout this study. 

Measurement of LTB4 and PGE2 

Serum levels of LTB4 and PGE2 were quantified using 

competitive enzyme-linked immunosorbent assay (ELISA) 

according to the protocol of the manufacturers from Cayman 

Chemical Company (Ann Arbor, MI, USA) and R&D 

System (Minneapolis, MN, USA), respectively. 

Western blot analysis 

Mice were sacrificed by cervical dislocation and the 

lungs were collected, frozen immediately in liquid nitrogen 

and were stored at -70℃ until analysis. The lung specimens 
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and whole cell extracts were homogenized in PhosphoSafe 

Extraction Reagent (Novagen Merck, Darmstadt, Germany) 

with phenylmethylsulfonyl fluoride protease inhibitor (Sigma 

-Aldrich, St. Louis, MO, USA). Western blot analysis was 

performed as described previously (Jeong and Im, 2019). 

Small interfering RNA interference 

Small interfering RNA (siRNA) strands for MKP-1 and 

controls were obtained from Santa Cruz Biotechnology 

(mRNA accession # NM: 013642, Santa Cruz, CA, USA). 

The target sequences are as follow; Duplex 1 sense strand: 

GGUUCAACGAGGCUAUUGA, Duplex 2 sense strand: 

CGAGGCUAUUGACUUCAUA, Duplex 3 sense strand: 

GCAAGACAUUUGCUGAACU. In vivo delivery of 

siRNA was performed using In vivo-jet polyethyleneimine 

(PEI; Polyplus-transfection, Illkirch, France), according to 

the instructions of the manufacturer. In brief, MKP-1 siRNA 

and PEI dissolved in 5% glucose were mixed in a volume 

of 200 μL for i.v. injection at room temperature for 20 min, 

and the mixture was administered 24 hr before Gln adminis- 

tration. The mixture containing control siRNA and PEI dis- 

solved in 5% glucose without siRNA were used as controls. 

The mixture almost completely inhibits the target molecule 

expression (Ko et al., 2009; Ayush et al., 2013). 

Statistical analysis 

Data are expressed as means ± SE. Statistical significance 

was determined via one-way analysis of variance (Stat-

View; Abacus Concepts Inc., Berkeley, CA, USA). A value 

of P < 0.05 was regarded as statistically significant. All 

experiments were conducted at least twice. Reproducible 

results were obtained and representative data are, therefore, 

provided in the figures. 

 

RESULTS 

p38 MAPK plays a key role in TNF-α-mediated phos- 

phorylation of cPLA2 

We first examined how p38 MAPK regulates TNF-α-

induced cPLA2 phosphorylation in the lungs. Administration 

of TNF-α resulted in phosphorylations of p38 MAPK and 

cPLA2 at 5~20 min (Fig. 1A). The p38 inhibitor SB202190 

inhibited TNF-α-induced cPLA2 phosphorylation (Fig. 1B) 

and increases in blood levels of the two cPLA2 metabolites, 

LTB4 and PGE2 (Fig. 1C), indicating that p38 is required 

for cPLA2 activation in response to TNF-α. 

 

 

A B 

 

Fig. 1. Gln inhibits TNF-α-induced cPLA2 phosphorylation and 
metabolites. A, Mice were injected i.v. with TNF-α (25 μg/kg) and 
the lungs were obtained at the indicated times. B and C, SB202190 
(5 mg/kg) was administered i.p twice (-2 and -1 days) before TNF-α 
injection, and the lungs were collected 15 min after TNF-α injection. 
Serum was prepared 2 hr after TNF-α injection. Representative 
immunoblots of phosphorylated form (p) of p38 and cPLA2 in lung 
tissues (A and B). C, Data represent mean ± SE. of three inde- 
pendent experiments (n = 4/group/time point). *P < 0.01 vs. normal 
control group; #P < 0.01 vs. TNF-α-treated group. 

C 
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Gln inhibits TNF-α-mediated phosphorylation of p38 

and cPLA2 and production of cPLA2 metabolites 

Gln nearly completely inhibited TNF-α-induced phospho- 

rylation of p38 and cPLA2 at 15 and 20 min when Gln was 

given at 10 min post TNF-α injection (Fig. 2A). The blood 

levels of the LTB4 and PGE2 in TNF-α-injected mice were 

also inhibited by Gln (Fig. 2B). We also examined the Gln's 

effect using the murine alveolar macrophage cell line MH-S. 

Addition of TNF-α increased the phosphorylation of p38 

and cPLA2, which were dephosphorylated by adding Gln 

10 min after TNF-α stimulation (Fig, 2C). Gln also inhibited 

TNF-α-induced increases in LTB4 and PGE2 production 

(Fig. 2D), as seen in in vivo study. 

 

 

 

MKP-1 induction/p38 inhibition is involved in Gln 

inhibition of TNF-α-mediated phosphorylation of cPLA2 

MKP-1 appeared from 15 min in response to TNF-α in the 

lungs (Fig. 3A). Gln administration at 10 min post-TNF-α 

resulted in not only early appearance but also potentiation 

of MKP-1 upregulation (Fig. 3B). 

We examined the involvement of MKP-1 in Gln inhibition 

of TNF-α-induced cPLA2 phosphorylation using MKP-1 

siRNA. Gln again upregulated MKP-1 and inhibited p38 

and cPLA2 phosphorylation, and the effects of Gln were no 

longer observed in MKP-1 siRNA-, but not control siRNA-, 

treated mice (Fig. 3C). Furthermore, administration of MKP-

1 siRNA, but not control siRNA, abolished the Gln-induced 

inhibition of LTB4 and PGE2 production (Fig. 3D). These 

data indicate that Gln deactivates TNF-α-induced cPLA2 

activation through MKP-1 upregulation. 

Fig. 2. Gln inhibits TNF-α-induced phosphorylation of p38 and cPLA2 phosphorylation as well as the production of LTB4 and PGE2. 
A and B, Gln (750 mg/kg, i.p.) was given 10 min after TNF-α injection. A, The lungs were obtained at the indicated times. B, Serum was 
prepared 2 hr after TNF-α injection. C and D, MH-S cells (2 × 106) were treated with Gln (40 mM) 10 min after TNF-α treatment. Cell 
lysate was prepared at the indicated times. Representative immunoblots of p-p38 and p-cPLA2 using lung tissues (A) and cell lysates (C). 
GAPDH served as a loading control. B and D, Data represent mean ± SE. of three independent experiments (n = 4/group/time point). *P 
< 0.05 vs. normal control group; #P < 0.01 vs. normal control group; P < 0.01 vs. TNF-α-treated group. 

A B 

D C 
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DISSCUSSION 

 

Our previous reports have shown that Gln acts as a 

MKP-1 inducer, which deactivates not only p38 and JNK 

MAPKs, but also cPLA2 by dephosphorylating them in lung 

tissues in many disease models (Kim et al., 2006; Ko et al., 

2009). Therefore, we here demonstrated that Gln, in addition 

to the beneficial effects against inflammatory disease, also 

exerts an anti-inflammatory action against a proinflammatory 

cytokine itself through the same mechanism. In this study, 

our observation that 1) Gln administration resulted in earlier 

and stronger upregulation of MKP-1 and dephosphorylation 

of p38 and cPLA2 in TNF-α-injected mice, and 2) MKP-1 

siRNA abolished such effect of Gln, indicated that such 

effect of Gln was attributed to the early upregulation of 

MKP-1. Regarding the administration time and concen- 

tration of Gln in vivo, we have reported that Gln induced 

MKP-1 upregulation within 5 min after administration and 

the optimum concentration was 750 mg/kg (Ko et al., 2009, 

Ayush et al., 2013; Im et al., 2018). 

MKPs are subfamilies within a larger group of dual-

specificity protein phosphatases which dephosphorylate 

MAPK. MKP-1 has been reported as an ERK-specific phos- 

phatase (Sun et al., 1993; Misra-Press et al., 1995), but de- 

phosphorylate and inactivate both p38 and JNK MAPKs later 

(Franklin and Kraft, 1997; Chi et al., 2006; Hammer et al., 

2006; Zhao et al., 2006). Given that both p38 and cPLA2 are 

key enzymes involved in inflammation, MKP-1 is regarded 

as a negative regulator of inflammatory responses. Some 

stress stimuli can induce MKP-1 through transcriptional 

(Li et al., 2001; Wang et al., 2007) and post-transcriptional 

mechanisms (Brondello et al., 1999; Lin and Yang, 2006). 

These include oxidative stress and heat shock (Keyse and 

Emslie, 1992), anti-cancer drugs (Chattopadhyay et al., 2006; 

Wang et al., 2006) and UV light (Franklin et al., 1998). As a 

post-transcriptional mechanism, Brondello et al. (Brondello 

et al., 1999) reported that ERK MAPK phosphorylates 

MKP-1 on two carboxyl-terminal serine residues - serine 

359 and serine 364, resulting in the stabilization of MKP-1 

by preventing proteosomal degradation. We have reported 

Fig. 3. Gln potentiated TNF-α-induced MKP-1 induction and MKP-1 siRNA abrogates Gln inhibitions of TNF-α-induced cPLA2
phosphorylation and production of LTB4 and PGE2. A-D, Gln was given 10 min after TNF-α injection. Lungs were removed 20 min 
(C) and serum was prepared at 2 hr (D) after TNF-α injection. Representative immunoblots of MKP-1 (A-C) and p-p38, p-cPLA2 (C) in 
lung tissues. D, Data represent mean ± SE. of three independent experiments (n = 4/group/time point). *P < 0.01 vs. normal control group;
#P < 0.01 vs. TNF-α-treated group; P < 0.01 vs. TNF-α + Gln-treated group. 

A 

C D 

B 
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that Gln increase of ERK activity via activation of the 

Ca2+/Ras/c-Raf/MEK (ERK cascade) pathway as a post-

transcriptional mechanism (Ayush et al., 2016). 

TNF-α is importantly involved in the pathogenesis of 

many important inflammatory diseases such as rheuma- 

toid arthritis, Crohn's disease, psoriatic arthritis, juvenile 

idiopathic arthritis, psoriasis, and ankylosing spondylitis 

(Kalliolias and Ivashkiv, 2016). Although the action of TNF-

α has not been fully elucidated in the context, the ability of 

TNF-α to activate cPLA2 can explain its proinflammatory 

properties because cPLA2 is involved in the generation of 

the potent pro-inflammatory lipid mediator, eicosanoids. 

These molecules are importantly associated with the patho- 

genesis of rheumatoid arthritis (Feuerherm et al., 2019), 

Crohn's disease (Rosengarten et al., 2016), psoriasis (Omland 

et al., 2017), and other autoimmune diseases (Marusic et al., 

2008; Yang et al., 2014). 

The approved anti-TNF agents have been widely used in 

the treatment of TNF-associated diseases (Monaco et al., 

2015). However, it has been reported that the clinical use 

of TNF has been turned out to have several limitations, 

such as 1) low rates of disease remission, 2) increase in 

common and opportunistic infections, i.e., reactivation of 

latent tuberculosis, and 3) induction of autoantibodies, lupus-

like symptoms, and increased risk for specific malignancies, 

such as lymphomas (Smith and Kauffman, 2009; Deepak 

et al., 2013; Feldmann and Maini, 2015). 

In summary, we found that Gln successfully inhibited 

TNF-α-induced cPLA2 phosphorylation. Given that sup- 

portive nutritional Gln therapy is safe (Wischmeyer et al., 

2001; Novak et al., 2002), Gln may provide a therapeutic 

regimen to many inflammatory diseases in which TNF-α 

plays an important role in their pathogenesis. 
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