
INTRODUCTION

Mesenchymal stem cells (MSCs) have been used as a 

novel tool for treating various diseases due to their im-

mune-regulatory and tissue-regenerative potential (Ley-

endecker et al., 2018; Xia et al., 2018). Additionally, they 

are relatively immunologically tolerable, which makes 

them immunologically inactive upon being administrated 

in vivo (Fitzsimmons et al., 2018). Despite their unique 

usefulness, the therapeutic potential has not been consis-

tent, and sometimes no improvement can be seen (Holan 

et al., 2016; Lohan et al., 2017).

Given these difficulties, studies have shown that vari-

ous chemical, physical, and genetic modification have 

improved the trophic effects of MSCs, e.g., adhesion, 

migration, survival, while limiting the senescence dur-

ing an extended culture period (Jo et al., 2019; Jeon and 

Rho, 2020; Ocansey et al., 2020). Specifically, unfavorable 

microenvironment upon being cultured in vitro and being 

administrated in vivo precludes the clinical uses of cell-

based therapeutic products (Li et al., 2019).

2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid 

methyl ester (CDDO-Me), an analogue of oleanolic acid, 

the first orally available NRF2 activator, has been known 

to inhibit inflammation, tumorigenesis, neural cell dam-

age, and oxidative damage (Kim et al., 2019). Importantly, 

it was demonstrated that CDDO-Me stimulated the Nrf2 

pathway, as shown by an up-regulation in NQO1 in while 
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ABSTRACT    Mesenchymal stem cells (MSCs) have been recognized as a therapeutic 
tool for various diseases due to its unique ability for tissue regeneration and 
immune regulation. However, poor survival during in vitro expansion and after being 
administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing 
cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-
Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic 
acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-
antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted 
the proliferation of MSCs and increased colony forming units (CFU) numbers. No 
alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me 
treatment. We observed that CDDO-Me treatment reduced the cell death induced by 
oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream 
genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate 
that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and 
increasing viability under oxidative stress.
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blood cells (Hong et al., 2012) Another study demonstrat-

ed that CDDO-Me has potential to reduce inflammation 

as well as oxidative stress, thus reducing serum creatinine 

level in chronic renal failure (Pergola et al., 2011; Ruiz et 

al., 2013).

Herein, we investigated whether CDDO-Me can reduce 

the oxidative stress in MSCs under oxidative stress.

MATERIALS AND METHODS

Experimental design
We first investigated whether the growth of MSCs can 

be promoted by CDDO-Me. Next, we ascertained whether 

the basic characteristics of human MSCs remain unaltered 

upon CDDO-Me treatment. Subsequently, the survival of 

MSCs under oxidative stress in the presence or absence of 

CDDO-Me was compared. Finally, the nuclear transloca-

tion of NRF2, an ant-oxidative transcription factor, was 

examined in the MSCs after being treated with or without 

CDDO-Me.

Culturing human umbilical cord-derived MSCs
Human umbilical cord tissue-derived mesenchymal 

stem cells (MSCs) was purchased from ATCC (Manassas, 

VA). MSCs were cultured in MEM-α (Thermo Fisher Sci-

entific, Waltham, Massachusetts, USA) supplemented with 

10% fetal bovine serum (FBS, atlas Biologicals, Fort Col-

lins, USA), antibiotics-antimycotics (Genedirex, Taoyuan, 

Taiwan). CDDO-Me was purchased from Sigma-Aldrich (St 

Louis, MO). 50 nM of CDDO-Me was used. 

Cell proliferation assay
Cell proliferation was assessed by Cell Counting Kit-

8 (CCK-8; Dojindo). MSCs were seeded into the 96-well 

plates prior to analysis. 10 µL of the CCK-8 solution was 

added to each well. After 3 hours of incubation, the ab-

sorbance was measured at 450 nm using a microplate 

reader. 

Characterization of MSCs 
MSCs were incubated at 4℃ for 1 h with the following 

specific primary antibodies; CD34 Mouse anti-Human 

(Invitrogen), PE Mouse Anti-Human CD73 (BD Pharmin-

gen), CD29 antibody (BioLegend), HLD-DR (Santa Cruz 

Biotechnology). After binding, the cells were washed three 

times in 1mL of PBS containing 4% FBS. For secondary 

Abs, goat anti-mouse IgG H&L Dylight 488 was used. Data 

was acquired by the BD FACS Canto II Cytometer and 

FACS DIVA software (Ver6.1.3, BD Bioscience, Franklin 

Lakes, NJ, USA). Protocols for the differentiation of MSCs 

was based previous studies (Moon et al., 2018; Lee et al., 

2019). In brief, cells were seeded in 4-well plates (SPL, 

Korea) and cultured for 2 weeks using StemPro chondro-

genesis or osteogenesis differentiation medium (Thermo 

Fisher Scientific, Waltham, MA, USA). The differentiated 

cells were then stained with Alcian Blue or Alizarin Red 

staining kit (Lifeline Cell Technology, Frederick, MD, 

USA). For quantification, cells were incubated overnight 

in 0.1N HCl containing 0.1% Alcian blue, and rinsed three 

times in distilled water. After extraction using 200 µL of 

0.1 N HCl, and absorbance was measured at 620. For 

quantifying Alizarin red, 10% acetic acid was added, and 

the supernatant was collected. After washing with 10% 

acetic acid, they were collected again. After adding 250 

µL of mineral oil to the tube, the samples were incubated 

at 85℃ for 10 min, followed by being incubated in ice. 

After spinning-down, 250 µL of supernatant was mixed 

with 100 µL of NH4Cl, and the absorbance was measured 

at 405. For colony-forming unit (CFU) assay, MSCs and 

FD-MSC (2,400/well) were plated in 6-well plate. After 

fourteen days, colonies were stained with crystal violet. 

For quantification, dye was eluted using acetic acid and 

the absorbance was measured at 590nm using microplate 

reader (TECAN, Mannedorf, Switzerland).

Examining the function of CDDO-Me in MSCs under 

oxidative stress
MSCs were seed on 6-well plates and cultured overnight. 

Next day, 200 or 300 µM of hydrogen peroxide (H2O2) 

(Daejung, Korea) was used to treat the cells for 12 or 24 

h with or without CDDO-Me (50 nM). Cell viability was 

analyzed using the Cell Counting Kit-8 (Dojindo Labora-

tories, Kumamoto, Japan) according to the manufacturer’

s instructions.

qRT-PCR
Total RNA was extracted using Trizol® (Invitrogen, 

Carlsbad, CA, USA). A total 2 µg of RNA was used for in-

put, and cDNA was synthesized using cDNA synthesis Kit 

(Philekorea, Daejeon-si, Korea). qRT-PCR was conducted 

using the Accupower 2X GreenStar qPCR Master Mix (Bi-

oneer, Korea) in CFX96 Touch Real-Time PCR Detection 
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System (Bio RAD, Hercules, California). After the expres-

sion of each gene was normalized against Gapdh, and 

the relative expression was analyzed by the 2-ΔΔCt method 

(Livak and Schmittgen, 2001).

Immunocytochemistry
In a Poly-D-Lysine-coated 8-well chamber slide (SPL 

Lifesciences, Pochun, Korea), MSCs (five thousand cells) 

were seeded and incubated overnight. Cells were fixed 

in 4% paraformaldehyde in PBS (pH 7.4) for 10 min. Af-

ter being incubated for 10 min with PBS containing 0.1% 

Triton X-100, cells were washed 3 times with cold PBS. 

The cells were then blocked using 1% BSA in PBST (PBS + 

0.1% Tween20) for 30 min. After incubated with primary 

antibodies overnight, cells were washed 3 times. After be-

ing bound with secondary antibody for 1 hour, cells were 

washed three times with PBS. Before analysis, cells were 

stained with 0.1 µg/mL DAPI for 30 seconds. All images 

were analyzed and obtained using a confocal microscope 

(Leica TCS SP8 STED, Wetazlar, Germany). 

Statistical analysis 
Statistical analysis was performed using analysis of vari-

ation (ANOVA). Where statistical significance was found, 

an unpaired Student’s t-test was conducted between two 

groups. All analysis was performed by using GraphPad 

Prism 8.0 (GraphPad, San Diego, CA, USA). Significance 

was defined as p < 0.05.

RESULTS

The effect of CDDO-Me on the proliferation of MSCs
As shown in Fig. 1A, CDDO-Me-treated MSCs had an 

increased number of CFUs compared with non-treated 
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Fig. 1. The growth kinetics of CDDO-Me-treated MSCs. (A) The colony-forming unit (CFU) ability was analyzed by measuring the opti-
cal density (OD595). (B) Growth kinetics of MSCs treated with 50 nM of CDDO-Me for a week. The optical density (OD450) was mea-
sured for calculating the growth of MSCs. (C) Expression analysis of HO-1 in MSCs treated with or without CDDO-Me. Expression was 
normalized as those of GAPDH. All data are presented as the mean ± SEM. *p < 0.05 compared to untreated MSCs.
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control cells (Fig. 1B). Also, CDDO-Me led to an increased 

growth of MSCs (Fig. 1C). Also, qRT-PCR analysis revealed 

that the expression of HO-1 was up-regulated by CDDO-

Me in MSCs, compared with non-treated control cells.

Characterization of MSCs treated with CDDO-Me
Flow cytometric analysis indicated that treatment of 

CDDO-Me did not alter the expression of MSC cell sur-

face markers, as shown by positive activity against CD73, 

29 in both cell types. Similarly, CDDO-Me treatment did 

not induce the expression of negative markers CD34 and 

HLA-DR (Fig. 2A). No difference was found in osteogenic 

differentiation between cells treated with or without CD-

DO-Me (Fig. 2B).

Nuclear translocation of NRF2 by CDDO-Me
Confocal analysis showed that NRF2 expression was de-

tected exclusively in the cytoplasm of MSC in the absence 

of CDDO-Me (Fig. 3). In contrast, CDDO-Me treatment (50 

nM) for 24 hours led to the translocation of NRF2 protein 

into the nucleus of MSCs.

The effect of CDDO-Me on the survival of MSCs 

under oxidative stress
As shown in Fig. 4, pre-treatment of MSCs with CDDO-

Me potently increased the survival of MSCs undergoing 

oxidative cell damage. No change was observed when 

MSCs were treated with CDDO under oxidative stress.

DISCUSSION

This study aims to investigate whether CDDO-Me, a 

triterpene analogue of oleanolic acid, can promote anti-

oxidative role in MSCs. CDDO-Me has been used for 

treatment of inflammation, cancer and chronic kidney 

diseases (Wang et al., 2014). Specifically, this drug has 

been known as efficient inhibitor of the production of in-

flammatory enzymes, e.g., cyclooxygenase-2 and induc-

ible nitric oxide synthase (Honda, 2000; Liby et al., 2007).

Also, CDDO-Me contributes to activation of Kelch-like 

erythroid cell-derived protein with CNC homology-asso-

ciated protein 1/nuclear factor erythroid 2-related factor 

2/antioxidant response element (Keap1/Nrf2/ARE) axis, 

contributing to cell protection under abundant electro-
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Fig. 2. Characterization of MSCs treat-
ed with CDDO-Me. (A) Flow cytometry 
analyses of MSCs. (B) Differentiation 
potential of MSCs treated with CDDO-
Me. Cells were differentiated into os-
teogenic lineages for 10 days.
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philes or oxidative stress (Dinkova-Kostova et al., 2005; 

Yates et al., 2007). 

We found that 50 nM of CDDO-Me did not alter the ex-

pression of MSC cell surface markers, while stimulated the 

growth and CFU-forming ability. No difference was found 

in osteogenic differentiation of MSCs treated with CDDO-

Me. CDDO-Me up-regulated the expression of HO-1. 

Also, nuclear translocation of NRF2 was detected under 

confocal imaging analysis. Based on these results, we sug-

gest that CDDO-Me functions as a positive regulator of 

anti-oxidative role in MSCs, increasing cell survivability 

under oxidative stress. 

Studies have demonstrated that the function or survival 

of MSCs can be improved by various strategies. Most com-

monly, culture protocols have been optimized for MSCs. 

Other methods include drug treatment, gene engineering, 

for promoting their survival and migration toward lesion 

(Noronha et al., 2019). Based on our results, utilizing CD-

DO-Me may become a useful, simple, and potent protocol 

for culturing MSCs. In addition, CDDO-Me are now being 

used clinically, making this drug readily applicable for 

clinical use. Also, its signaling mechanism is well-defined 

(Ahmad et al., 2006; Borella et al., 2019; Kim et al., 2019). 

The role of CDDO-Me in mammalian cell is manifested 

by a cytoprotective strategy to reduce cell damage in-

duced by abrupt increase of ROS (Wu et al., 2011). Spe-
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Fig. 4. The effect of CDDO-Me on the survival of MSCs under oxidative cell stress. MSCs were cultured with or without CDDO-Me for 
12 or 24 hours prior to being exposed to hydrogen peroxide, or cultured simultaneously with or without CDDO under 200 or 300 µM 
of hydrogen peroxide for 12 or 24 hours (Sim 50 nM). The optical density (OD450) was measured for calculating the survival of MSCs. 
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cifically, the ARE downstream of NRF2 activation may 

have contributed this role, since ARE functions as an ef-

ficient antioxidant, leading to cellular balance (Alam et 

al., 1999; Loboda et al., 2016). As an ARE-regulated phase 

II detoxifying enzyme, HO-1 is a detox enzyme under 

control of ARE, making NRF2/HO-1 axis an efficient anti-

oxidative mechanism (Alam et al., 1999). Consistently, our 

study showed that NRF2 was exclusively found in nucleus 

after CDDO-Me treatment. It would be needed to analyze 

whether the expression of other antioxidant target genes 

are increased. 

CONCLUSION

CDDO-Me improves the functionality of MSCs by in-

creasing viability and protecting against oxidative dam-

ages.
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