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DEMO: Deep MR Parametric Mapping 
with Unsupervised Multi-Tasking 
Framework

INTRODUCTION

Quantitative magnetic resonance (MR) parametric mapping is an emerging tool for 
the evaluation and determination of fundamental biologic properties of tissues. It aims 
to measure absolute MR relaxations, thus providing a comparable measurement across 
sites and time points (1, 2). The most common way to obtain an MR parametric map is 
by acquiring multiply parametric-weighted images with varying imaging parameters, 
e.g., inversion time (TI) in T1 mapping, echo time (TE) in T2 mapping, and spin-lock 
time (TSL) in T1ρ mapping. The parametric map is then estimated by fitting these 
images pixel by pixel with a corresponding physical exponential model. The scan time, 
proportional to the number of acquired images, is relatively long in MR parametric 
mapping, which greatly hinders its widespread use in clinical applications (3, 4).

Recently, some studies have tried to reduce the scan time of parametric mapping 
using compressed sensing (CS) (5-8) or low-rank matrix completion (LR) (9-11). These 
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Compressed sensing (CS) has been investigated in magnetic resonance (MR) 
parametric mapping to reduce scan time. However, the relatively long reconstruction 
time restricts its widespread applications in the clinic. Recently, deep learning-
based methods have shown great potential in accelerating reconstruction time and 
improving imaging quality in fast MR imaging, although their adaptation to parametric 
mapping is still in an early stage. In this paper, we proposed a novel deep learning-
based framework DEMO for fast and robust MR parametric mapping. Different from 
current deep learning-based methods, DEMO trains the network in an unsupervised 
way, which is more practical given that it is difficult to acquire large fully sampled 
training data of parametric-weighted images. Specifically, a CS-based loss function is 
used in DEMO to avoid the necessity of using fully sampled k-space data as the label, 
thus making it an unsupervised learning approach. DEMO reconstructs parametric 
weighted images and generates a parametric map simultaneously by unrolling an 
interaction approach in conventional fast MR parametric mapping, which enables 
multi-tasking learning. Experimental results showed promising performance of the 
proposed DEMO framework in quantitative MR T1ρ mapping.  
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methods can be classified into three categories based on 
their approaches. The first category follows the processing 
pipeline of conventional parametric mapping and only 
uses CS/LR to reconstruct parametric-weighted images. 
The second category uses models to directly reconstruct 
the parametric map from undersampled data without 
reconstructing numerous parametric-weighted images 
(12-16), thus avoiding error propagation in the fitting 
process. The third category uses an interaction approach. 
The prior information contained in the physical model 
is complemented with sparse or LR constraints in an 
interacting way, thus exhibiting superior performance to 
other methods (17-19). More details about these three 
categories of approaches can be found in a previous 
study (19). However, the reconstruction time of these CS/
LR methods is very long. In addition, many parameters in 
the CS/LR model need to be tuned manually which are 
unacceptable in the clinic. 

Deep learning recently has attracted a lot of interest in 
accelerating MR imaging (20-32). It can solve the above 
CS/LR issues by learning the nonlinear mapping function 
from input-output pairs in an end-to-end manner (20-
26) or learning parameters, regularization function, even 
data consistency in an unrolling manner (27-32). Currently, 
there are only limited applications of deep learning for 
MR parametric mapping (33-35). For example, MANTIS 
(34) used a U-net mapping to generate a T2 map from 
undersampled k-space data in an end-to-end manner. Cai 
et al. (33) applied an end-to-end ResNet to T2 mapping 
from single-shot overlapping-echo detachment planar 
imaging. It can be seen that these existing methods all 
fill in the second category by using a deep network to 
directly reconstruct a parametric map from undersampled 
k-space data. Moreover, these methods are conducted in a 
supervised manner where the reference parameter map is 
given. However, supervised learning needs a large number 
of fully sampled k-space data which may be difficult to 
acquire in practice. In addition, reference parametric maps 
created by different fitting algorithms from fully sampled 
images might be slightly different. Therefore, unsupervised 
learning in fast MR parametric mapping is highly desired. 

In this paper, we proposed a novel DEep MR parametric 
mapping method using unsupervised multi-tasking 
framewOrk (DEMO) to handle the situation where 
collecting a large number of fully sampled k-space data 
of the parametric-weighted images would be impractical. 
Specifically, a CS-based objective function including 
data consistency term and sparsity term was used as the 

loss function so that fully sampled k-space data or the 
reference parameter map would not be needed anymore. 
Besides, a multi-tasking learning strategy was developed 
to reconstruct parametric weighted images and generate 
a parametric map simultaneously. Moreover, the physics 
model was incorporated into the mapping task to enforce 
its output the same as the input in a self-supervised way. It 
could also interact with the reconstruction task. Therefore, 
DEMO is an interactive approach belonging to the third 
category. Comparisons were made with a sparsity-driven 
method rec-PF (36) and a low-rank and sparsity driven 
method k-t SLR (37) which also resorted solely to observed 
data. Experimental results using in vivo data sets showed 
that the proposed unsupervised framework achieved 
superior reconstruction and mapping performance. 

A preliminary account of this work was previously 
presented as an abstract in ISMRM 2020 (38), where the 
CS objective function was used as the loss function to learn 
how to reconstruct a static image from its undersampled 
k-space data in a single task in an unsupervised manner. The 
performance of our proposed framework was demonstrated 
for T1ρ mapping of knee cartilage. However, it could also be 
applied to other quantitative MR parametric mapping using 
corresponding signal models.

METHODOLOGY

Fast MR Parametric Mapping
One of the important strategies to reduce MR parametric 

mapping scan time is to acquire k-space data with sub-
Nyquist sampling. However, image reconstruction from 
undersampled k-space data is an ill-posed inverse problem. 
Directly reconstructing images from undersampled k-space 
data will result in aliasing artifacts in the image, which will 
then contaminate the parametric map. In such scenarios, 
additional prior information is often incorporated into 
the imaging model to facilitate the reconstruction. In 
the past decade, CS has attracted a lot of attention in 
accelerating MR imaging (39-41). It exploits the sparse 
prior of the image and solves the underlying constrained 
optimization problem to reconstruct images from highly 
undersampled k-space data. In general, the CS model for 
MR reconstruction can be formulated as a data consistency 
term and a sparse promoted term: 

min ||Am-f||  + λ||Dm||1

m
	 [1]
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where m is the image to be reconstructed, D is a sparse 
transform such as wavelet transform or total variation, A 
is the undersampled Fourier encoding matrix, f denotes the 
acquired k-space data, and λ is the regularization weight.

With well-reconstructed images, a parametric map can 
be generated using conventional fitting methods with an 
established physical model. Taking quantitative T1ρ mapping 
as an example, T1ρ-weighted images follow an exponential 
decay as follows: 

M = S (M0 ,T1ρ) = M0 exp (-TSLk/T1ρ)k=1,2,…,N	  [2]

where M is the image obtained at varying TSLs and M0 is 
the equilibrium image obtained without applying a spin-
lock pulse (called “baseline image” hereafter). Once T1ρ

-weighted images are obtained, T1ρ map can be generated 
linearly by fitting along the TSL direction pixel by pixel 
following model [2], which can be linearized by applying 
the logarithm to both sides. 

However, the prior information of the signal relaxometry 
model is not fully utilized in such a two-step manner to 
generate a parametric map from undersampled k-space 
data. To better explore the prior provided by the signal 
model, the predictability of the parametric model can 
be introduced into the parametric weighted image 
reconstruction. Figure 1 illustrates a flowchart of this 
interaction approach of the third category. The prior 
information contained in the parameter model could 
increase data redundancy within parametric weighted 
images so that performances of both image reconstruction 

and parametric map fitting could be improved (17-19). 

Deep MR Imaging
Although CS-based reconstruction methods can achieve 

high performance with many theoretical guarantees, 
the sparsity prior is usually enforced by fixed sparsifying 
transforms or linear dictionaries, which can restrict the 
performance of CS in pursuing higher acceleration factors. 
The deep learning approach goes beyond CS by exploiting 
the image prior through network learning from large 
training data. It can be approximately categorized into two 
types: those based on unrolled algorithms and those not 
based on unrolled algorithms (42). With the unrolling-based 
approach, an iterative algorithm used for solving an inverse 
problem is unrolled to a deep network in which all free 
parameters and functions can be learned through network 
training. For the approach that is not based on unrolling, 
it employs an end-to-end network to learn the mapping 
between the network input and output. In the current field 
of deep MR parametric mapping, an end-to-end network 
is usually selected to generate a parametric map in a 
supervised manner.

Overview of DEMO
In supervised learning for image reconstruction, 

parameters of the network update through training to 
achieve the lowest error between the network output and 
the ground truth, which is usually controlled by the loss 
function of mean square errors (MSE). Since there are no 
fully sampled k-space data to produce training pairs, it 

Fig. 1. Schematic illustration 
of the interaction approach in 
fast  MR parameter mapping. 
Parameter-weighted images and 
the corresponding parameter map 
are iteratively updating through 
an optimization algorithm that 
minimizes the CS objective function, 
where (m) denotes the sparse prior.
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is necessary to find an alternative loss function without 
labels involved. CS searches the solution that minimizes 
the objective function [1]. Deep learning aims to train 
the network that could minimize the loss function which 
induces the training direction of the network. It comes 
naturally that the objective function of CS [1] can be used 
as the loss function of deep networks in that the network 
searches the optimal one among all potential solutions 
given partial sampled data and sparse constraints. In such 
scenarios, no ground-truth or fully sampled data are needed. 
Inspired by this idea and given the fact that the parameter 
map is usually estimated from parameter-weighted images, 
DEMO adopts the CS objective function [1] as the loss 
function in network training. Specifically, the loss function 
used for network training in DEMO was defined as follows:

L(Θ) =  ∑  || AM(Θ,f)-f k ||  + λ || M(Θ,f) || TV 	 [3]

where M(Θ, f) was the parametric-weighted images based 
on network parameter Θ and undersampled k-space data f, 
and || . ||TV was the total variation (TV) regularization.

In conventional fast MR parametric mapping, the third 
category of approach involves parametric map updating 
during iterations of reconstruction. This scheme enables 
better performance than the first category of approach 
which isolates steps of image reconstruction and parameter 
map fitting. DEMO unrolls this iteration as a deep network 
with a reconstruction module and a fitting module as shown 
in Figure 1. All these are implemented using deep learning. 
Specifically, a deep learning-based parameter map fitting 
interacted with deep unrolled reconstruction to improve 
both reconstruction quality and parameter mapping. The 
whole procedure can be formulated as follows:

mn+1 = Γ(Amn,A n,f)
(M0,T1ρ)n+1 = U(mn+1)	 [4]

n+1 = S(M0,T1ρ)n+1

where n is the iteration number, m is the parametric-
weighted image (here refers to T1ρ-weighted image from 
deep unrolling reconstruction Γ), (M0,T1ρ) is the baseline 
image and associated T 1ρ map which are generated 
simultaneously from network U,  is the synthetic T1ρ

-weighted images satisfying the T1ρ signal decay as in model 
[2].

Figure 2 presents an overview of the proposed framework 
DEMO. There are two chained networks in the framework 
that generate reconstructed images and T1ρ map directly 
from undersampled k-space data. One sub-network named 
Recon-net is used for image reconstruction and the other 
Mapping-net is used to estimate T1ρ map and baseline 
image M0 with input images from Recon-net. A physical 
model was incorporated after Mapping-net to generate T1ρ
-weighted images, which were then used as inputs of the 
next Recon-net. 

Details of each sub-network are as follows:
1) Recon-net: The network used for reconstruction is 

the modified PD-net, which is the unrolling version of the 
primal-dual algorithm. It has been applied to accelerate MR 
imaging successfully (43). In Recon-net, the formulation 
can be written as follows:

dn+1 = Γ(dn, Amn, A n, f)
mn+1 = Λ(mn, n, A* dn+1)

	 [5]

where d is the dual variable. Figure 3a illustrates one 

Fig. 2. Overview of the proposed 
framework DEMO. The CS-based 
loss function make DEMO an 
unsupervised framework, and the 
two chained sub-networks Recon-
net and Mapping-net complete 
the tasks of images reconstruction 
and parametric map estimation, 
respectively. The physical model is 
used to connecting the two tasks.
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iteration block of Recon-net. The dual block Γ accepts 
four 4D tensors input and performs three layers of 2D 
convolution with filter size 3 × 3. The two channels of input 
tensors represent real and imaginary parts of complex-
valued MR data. The number of feature maps is denoted on 
the top of each layer. To train the network more easily, we 
made it a residual network. The iteration number was set to 
be 5.

2) Mapping-net: A modified U-net used for generating 
(M0, T1ρ) is described in Figure 3b. Several modifications 
were made to accommodate the proposed framework. 
First, a convolutional layer with stride 2 was used to down-
sample the image instead of using the max-pooling layer 
to make the network a fully convolutional network. Second, 
the left side feature was directly added to the right side 
instead of concatenation operations to reduce the number 
of training parameters. Third, Bi-linear interpolation was 
used for the up-sampling layer to reduce checkerboard 
artifact. Fourth, since the image was complex-valued and 
the parameter map was always non-negative, the out 
channel of the M0 generating branch was 2 representing 
real and image parts of M0. The last layer of the map 
generating branch was the 2D convolution followed by a 
ReLU activation. The out channel was 1. The last layer in 
the two branches uses a kernel of size 1 × 1. Weights of 
Mapping-net were shared across iterations to reduce the 
number of training parameters.

EXPERIMENTAL RESULTS 

Datasets
Six healthy volunteers (2 males aged 26 ± 2 years old 

and 4 females aged 45 ± 15 years old) were recruited for 
T1ρ scanning. Informed consent was obtained from the 
imaging object in compliance with the IRB policy. All MR 
scans were performed with a 3T scanner (uMR 790, United 
Imaging Healthcare, Shanghai, China) using a commercial 
12-channel phased-array knee coil. T1ρ-weighted images 
of the knee were acquired using a 3D modulated flip angle 
technique in refocused imaging with an extended echo train 
(MATRIX) sequence and a self-compensated paired spin-lock 
preparation pulse. The spin-lock frequency was fixed at 500 
Hz (equivalent to a spin-lock pulse field strength of 11.74 
μT). Imaging parameters were as follows: TE/TR = 8.96/2000 
ms, echo train length = 60, FOV = 250 × 143 × 143, matrix 
size = 256 × 146 × 124, recon pixel size = 0.98 × 0.98 
×0.98 mm3, echo spacing = 4.48 ms, and TSLs = 5, 10, 20, 
40, and 60 ms. The total scan time for the fully sampled 
k-space data with elliptical scanning was 39 minutes and 
30 seconds, which would be unacceptable in the clinic. 
Fully sampled multi-coil k-space data were adaptively 
combined to single-coil data (44) and then cropped to 256 
× 144 × 124 to be treated as references only for evaluating 
performance in the comparison. These fully sampled data 
were then retrospectively undersampled using Poisson-disk 

Fig. 3. Architectures of the networks 
used in DEMO. (a) The n-th iteration block 
in Recon-net. Both dual iteration Γ and 
primal iteration Λ adopt a 3-layer CNN 
and residual learning. (b) The Mapping-
net. A modified U-net architecture is used 
to generate a parametric map.

a

b
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random patterns with net accelerations of 5.2 and 7.6 to 
generate undersampled data. Noted that the sampling mask 
at each TSL had the same acceleration factor but different 
sampling locations.

Network Training
Undersampled data were concatenated together from 

all five TSLs with two channels representing real and 

imaginary parts. Thus, the input of Mapping-net had a total 
of 10 channels. In Recon-net, the dimension of these five 
TSLs was embedded in the batch dimension due to the 2D 
convolution used. Of the six subjects, four (generating 780 
selected 3D training data) were used for training and the 
remaining two subjects were used for testing. Of a total of 
780 slices in the training union, 700 slices were randomly 
selected for training the network.

Fig. 4. Reconstruction images at three TSLs from an axial view with an acceleration factor of 5.2 from subject 1. Zoom-in 
images of the enclosed part are provided in the right column to give detail comparisons.
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The input of the framework included undersampled 
k-space data and sampling mask. The output of the 
framework was the T1ρ map, the baseline image M0, and 
the weighted image generated by (M0, T1ρ ). The generated 
weighted image was then used for calculating CS-based 
loss [3]. The network was trained in a minibatch manner 
with 10 image slices in a single minibatch. ADAM optimizer 
was used to update network weights. The learning rate 
followed an exponential decay with an initial value of 0.001 
and a decay rate of 0.95. The parameter in the loss function 

[3] was empirically selected as λ = 0.0003. To investigate 
the influence of different weighting parameter, additional 
experiments were conducted with λ = 0.0001, λ = 0.0005, 
and λ = 0.001.

The entire framework was implemented on an Ubuntu 
16.04 LTS (64-bit) operating system equipped with a Tesla 
TITANXp Graphics Processing Unit (GPU, 12GB memory) in 
the open framework Tensorflow with CUDA and CUDNN 
support. The network training took approximately 1 hour 
with 200 epochs.

Fig. 5. Comparison of reconstructed images with different reconstruction methods at three TSLs with R = 5.2 from the other 
subject. The proposed DEMO showed better performance in detail preservation and noise suppression indicated by arrows.
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Evaluation
The performance of the proposed framework DEMO was 

evaluated by comparing with ① conventional sparsity-
based reconstruction approaches using a TV regularization 
(Rec_PF), a combination of low-rank and sparsity constraint 
(k-t SLR) on the multi-TSL image series (both belonging to 
the first category that only reconstructs the parametric-
weighted images and then estimates the parametric map), 
and the parametric signal compensation method (SCOPE) 
(belonging to the third category that the parametric map 
estimation is interacted in the pipeline of reconstruction); 
② direct CNN training which used only “Mapping-net” 
mentioned above to generate a parametric map from 
undersampled multi-TSL images (referred to as “Mapping-
net” hereafter, which belongs to the second category that 
estimates the parametric map directly from raw data); 
and ③ a 2-step CNN approach which used the Recon-net 
mentioned above to reconstruct the multi-TSL image series 
and then used the fitting algorithm [2] to fit the parametric 
map (referred as “Recon-net + Fitting”, belonging to the 
first category).

T1ρ map of the region-of-interest (ROI) was overlaid on 
the reconstructed T1ρ-weighted image at TSL= 5 ms to 
compare mean values and standard deviations of T1ρ in 

cartilage from rec-PF, k-t SLR, SCOPE, Mapping-net, Recon-
net + Fitting, and the proposed DEMO at R = 5.2 with 
reference T1ρ values from fully sampled images.

RESULTS

Figure 4 shows reconstruction results of T1ρ-weighted 
images from different reconstruction methods at R = 5.2 
for subject 1. Images reconstructed with rec-PF showed 
apparent detail loss and noticeable artifacts. Although 
k-t SLR reconstruction demonstrated improved image 
quality than rec-PF, it still showed signal loss and noise, 
especially at long TSLs. SCOPE did not perform well for 
the balance of artifact removal and detail preservation. 
However, the proposed DEMO generated nearly artifact-free 
reconstructions with well-preserved features.

Sagittal views of reconstructed images are shown in 
Figure 5. With short TSLs (5 ms and 20 ms), DEMO had 
a better depiction of fine details. It also showed better 
performance for noise suppression, consistent with the 
axial view shown in Figure 4. Although Rec_PF did better 
for artifact removing, it was too smooth in the image that 
useful features might last.

Fig. 6. Estimated T1ρ parameter maps for selected cartilage ROIs with sagittal and axial views overlaid on reconstructed T1ρ

-weighted images at TSL = 5 ms for R = 5.2 from subject 1. The reference image and corresponding T1ρ parameter maps were 
obtained from fully sampled k-space data. Mean values and standard deviations of ROI T1ρ maps are also provided.
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Figure 6 shows sagittal and axial views of the same 
dataset used for Figure 4 at TSL = 5ms. Selected ROIs of T1ρ 
map were overlaid on reconstructions. ROI T1ρ mean values 
and standard deviations of different methods are also 
provided. DEMO gave the most similar values of T1ρ to the 
reference with the lowest standard deviation.

Although displayed images reconstructed from k-t 
SLR showed better quality than those from Rec_PF, the 
parametric map was not. This was because reconstructed 
images showed severer noise at long TSLs from k-t SLR 
(seen in Figs. 4, 5), which might have a deleterious effect 
on parameter estimation. SCOPE did a better job than k-t 
SLR due to interactions between the parametric-weighted 
image reconstruction and map estimation.

To test the stability of DEMO, the network trained with 
a specific sampling ratio was evaluated using data with 
other sampling ratios. As shown in Figure 7, data with R = 
7.2 could be well reconstructed from the network trained 
with R = 5.2, demonstrating the flexibility of DEMO for 
changing acceleration factors. Although there was a little 
over smoothing in the reconstructed image with R = 7.2, 
the bias of T1ρ values was still acceptable considering that 
fewer data were acquired.

Figure 8 shows results of reconstructions using different 
deep learning methods at R = 5.2 for subject 1. Images 
reconstructed with Mapping-net and Recon-net separately 
were over-smoothed (indicated by yellow arrows in the 
image) than those with DEMO.

Fig. 7. Estimated T1ρ parameter maps from DEMO for selected cartilage ROIs with axial view overlaid on reconstructed T1ρ

-weighted images at TSL = 5 ms for different acceleration factors from subject 1 (second row). Corresponding zero-filling 
images are also provided (first row).
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DEMO showed a similar performance to reference 
in T1ρ estimation, while Recon-net + Fitting performed 
worse, showing approximately 3 ms of bias compared 
to reference in mean value of ROI. Mapping-net showed 
worse performance than the other two deep learning-
based methods. The main reason why DEMO performed 
better than Recon-net + Fitting and Mapping-net was due 
to the interaction strategy that the physical model prior 
could improve parametric-weighted image reconstruction 
and that better reconstructed parametric-weighted images 
could improve the parametric map estimation. Nevertheless, 
the method of Mapping-net took the shortest time to 
generate a parametric map as it only needed to perform 
one forward process of a U-net. Recon-net + Fitting took 
the longest time due to the conventional fitting algorithm 
[2] known to fit the parametric map pixel by pixel. DEMO 
generated the parametric map in a reasonable time as 
its reconstruction and the map estimation were both 
accomplished by networks.

Figure 9 illustrates the performance of DEMO with 
different λ values in loss function at R = 5.2. The 
reconstruction quality is affected by the weighting 
parameter. Just as in conventional CS optimization, a 
large regularization parameter (λ = 0.001) will result 
in over-smooth in the image while a small parameter 

(λ = 0.0001) will show artifacts. With an appropriate 
parameter (λ = 0.0003), the reconstruction showed good 
artifact suppression and detail preservation. There were 
few differences among T1ρ maps with a broad range of 
regularization parameters.

CONCLUSION AND OUTLOOK

In this paper, an unsupervised deep learning framework 
called DEMO was proposed for accelerating MR parametric 
mapping. The core novelty of DEMO is that it uses a CS-
based loss function to train the network without needing 
fully sampled training data. The entire reconstruction 
framework can be formulated as an unrolled version of 
the interaction approach, which alternatively updates 
parametric-weighted images reconstruction and parameter 
map estimation. This alternative updating strategy allows 
DEMO to accomplish both image reconstruction and map 
fitting tasks with improved performance for each task due 
to interactions between them. 

The unsupervised training strategy used in DEMO can be 
applied to other supervised networks by replacing the loss 
function with the corresponding CS objective function in 
the case where fully sampled k-space data are not acquired. 

Fig. 8. Comparison of reconstructed images and T1ρ map for selected cartilage ROIs using DEMO with images and T1ρ map 
generated using Mapping-net and Recon-net + Fitting at R = 5.2. 
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Therefore, it can be easily extended to other applications, 
such as conventional static imaging and dynamic imaging. 
Our preliminary work showed that this strategy achieved 
better performance than CS in reconstructing static 
images. Moreover, it provides an alternative way to solve 
a CS optimization problem besides the traditional iterative 
reconstruction method and the deep-learning unrolling 
method. 

Although the feasibility of DEMO was evaluated for 
accelerating mono-exponential T1ρ mapping of the knee 
in this study, this framework could be extended to more 
advanced signal models such as the multi-exponential 
model (45-47).

Our study has several limitations. All experiments were 
performed using single-coil data. Although the proposed 
method achieved a high acceleration factor of 7.6, multi-
coil data containing coil sensitivity information and more 
data redundancy might further improve the reconstruction 
accuracy and acceleration factor. The network performance 

using multi-coil data will be explored in our further 
work. Another improvable aspect was the selection of 
regularization parameter in our loss function. Automatically 
choosing optimized regularization parameter in an adversary 
manner might be a more stable and flexible approach to 
solve this issue.
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