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Accelerating Magnetic Resonance 
Fingerprinting Using Hybrid Deep 
Learning and Iterative Reconstruction 

INTRODUCTION

Magnetic resonance fingerprinting (MRF) with a variable flip angle (VFA) scheme 
and a dictionary matching can provide time-efficient T1 and T2 quantifications (1). 
Clinically, MRF employing T1 and T2 (1) has been used to characterize brain tumors (2), 
breast cancer (3), and prostate cancer (4). MRF can acquire hundreds of dynamics with 
a high undersampling factor to characterize signal evolution and quantify T1 and T2 
simultaneously (1). Considering that a certain number of dynamics (e.g., 700-1000) are 
needed for quantification, current MRF protocols generally took 7-10 seconds per slice. 
Acceleration methods are needed to speed up the MRF protocol.

MRF reconstruction is conventionally based on Fourier transform and dictionary 
matching (1). Like magnetic resonance imaging (MRI), MRF reconstruction can be 
modelled as the inversion of the encoding matrix that contains coil sensitivity, Fourier 
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Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a 
flexible deep learning reconstruction method. 
Materials and Methods: Synthetic data were used to train a deep learning model. 
The trained model was then applied to MRF for different organs and diseases. 
Iterative reconstruction was performed outside the deep learning model, allowing 
a changeable encoding matrix, i.e., with flexibility of choice for image resolution, 
radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments 
were performed on normal brain and prostate cancer volunteers to demonstrate the 
model performance and generalizability.
Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused 
a slight increase of random fluctuations on the T2 map. These fluctuations were 
reduced with the proposed method. In prostate MRF, the proposed method suppressed 
fluctuations on both T1 and T2 maps. 
Conclusion: The deep learning and iterative MRF reconstruction method described 
in this study was flexible with different acquisition settings such as radiofrequency 
coils. It is generalizable for different in vivo applications. 
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transform, and k-space undersampling operators. The 
acceleration method such as compressed sensing and 
parallel imaging can be directly applied to MRF (5). In 
previous studies, a constraint for dictionary matching has 
been used, serving as a projection onto the feasible space 
for accurate T1 and T2 quantifications (6, 7).    

Iterative reconstruction is conventionally used with 
compressed sensing, parallel imaging, and dictionary 
matching constraints (6, 7). These previous studies have 
used alternating direction method of multipliers (ADMM) 
to solve the problem of multiple constraints/regularizations 
(6, 7). The ADMM reconstruction with the constraint of 
dictionary matching has demonstrated the feasibility of 
accelerating MRF. Iterative reconstruction also allows a 
changeable encoding matrix with the flexibility of choice 
for image resolution, coil sensitivity profile, k-space 
trajectory, and undersampling mask.

Deep learning has recently been used as an alternative 
to regularized MRI reconstruction (8-10). It can improve 
reconstruction performance in some predetermined 
acquisition settings or pre-trained imaging tasks (8-10). 
However, it is not flexible for different under-sampling 
schemes in MRI acquisition. We have recently applied 
Bayesian inference to model MRI reconstruction using a 
statistical representation of an MRI database as a prior 
model (11). Our Bayesian MRI reconstruction uniquely 
supports changeable encoding matrix.

In conjunction with deep learning MRI, the deep 
learning MRF has also been extensively studied (12-17). 
In those studies, feed-forward networks that contained 
few fully connected layers or convolutional layers were 
used to perform T1 and T2 reconstructions (12-15) or 
quantifications (16-18). Feed-forward networks are usually 
fixed after model training. Thus, the encoding matrix 
is not changeable. A more recent study on a proximal 
network has echoed recent developments of deep learning 
MRI and defined regularization explicitly (19). However, 
abovementioned methods all require in vivo data for 
training the model, limiting their generalizability for 
different organs and diseases. Therefore, current deep 
learning MRF methods are limited by the fixed encoding 
matrix and the requirement of in vivo datasets for model 
training.  

The objectives and innovations of this study are two-fold. 
Firstly, the proposed method used synthetic data to train 
the deep learning model and the resulted model could be 
applied to different organs and diseases. Secondly, iterative 
reconstruction was performed outside the deep learning 

model, allowing a changeable encoding matrix, i.e., with 
flexibility of choice for image resolution, radiofrequency 
coil, k-space trajectory, and undersampling mask. In vivo 
experiments were performed on normal brain and prostate 
cancer volunteers to demonstrate the model’s performance 
and generalizability. 

METHODS

MRF Acquisition, Post-Processing, and Dictionary 
Generation

MRF scan was performed on a Philips Achieva 3T system 
(Philips Healthcare, Best, The Netherlands). Details of the 
sequence were presented in our previous study (18). Briefly, 
fast imaging with steady state precession (FISP) MRF was 
performed with the following parameters: a “half-sine”-style 
variable flip angle, 1000 dynamics, spiral in-out readout, 
2D acquisition, constant TE/TR = 6/12 ms, slice thickness  
= 5 mm, matrix size = 256 × 256, number of total spiral 
interleaves = 48, and golden angle rotation scheme. 

The local institutional research ethics committee approved 
in vivo experiments. For brain MRF, a normal volunteer 
was scanned using the MRF sequence. Only one slice was 
acquired with a scan time of 12 seconds. For prostate MRF, 
a prostate cancer patient was scanned with the same MRF 
protocol and eight slices were acquired with a scan time of 
1 minute and 36 seconds.

ESPIRiT coil sensitivity (20) was then calculated based 
on the sum for all dynamics. The k-space data were first 
compressed into four singular value components. Details 
of k-space compression will be presented in another study. 
Non-uniform Fourier transform was performed in a python 
and tensorflow environment (https://www.tensorflow.
org/) using an open-source package (https://github.com/
zaccharieramzi/tfkbnufft). Reconstruction algorithms were 
developed using the “eager mode” in tensorflow software. 

Iteration of reconstruction was implemented in a 
conventional regularized optimization method, i.e., proximal 
gradient descent. The deep learning model served as the 
proximal operator that could be inserted into regularized 
optimization methods. This approach was inspired by a 
recent paper on proximal gradient network (19). Our study 
used synthetic data to train the deep learning model 
outside the iterative reconstruction algorithm. The proposed 
method was generalizable for different organs and encoding 
matrices.
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Regularization Using a Deep Learning Model
The cost function for deep learning-based MRF 

reconstruction is given as follows:

LR (x) = ||PFSx-y||  + R(x) Eq. 1

where x  is image series, y  is k-space data, R is deep 
learning-based regularization, S is coil sensitivity profile, F is 
non-uniform Fourier transform, and P is the undersampling 
mask. Minimizing the LR can allow reconstruction of MRF 
image series. Noted that x, y, and P are all compressed 
to four singular values. For simplicity, we can rewrite the 
encoding matrix as A = PFS.
The deep learning model serves as the proximity operator 
for regularization R. It is written as follows:

ProxR (x) = argminx ||x-x0||  + R(x)  Eq. 2

Where x0 is the input for the proximity operator, i.e., the 
input for the deep learning model. In intuitively, the deep 
learning could output the solution x that is near the input 
x0 in a norm-2 distance sense.

Proximal Gradient Descent 
The proximal gradient descent for solving Eqs. 1 and 2 is 

given as follows:

g (xk) = ||Axk-y||  

xk+1 = ProxR (x
k-t g (xk)), k = 1, 2, 3,...  Eq. 3

where g is the fidelity term in Eq. 1 and ProxR is the deep 
learning model, leading to the regularization term in Eq. 1. 
The gradient of fidelity term, i.e., g, is given as follows:

g(x) = AH (Ax - y)   Eq. 4

In this study, Eqs. 3 and 4 were solved outside the deep 
learning model so that the encoding matrix, A = PFS, was 
changeable for different acquisition settings.

Deep Learning Implementation
The deep learning structure was inspired by the encoder-

decoder structure in a previous study (19), mimicking 
dictionary matching and back projection processes as 
shown in Figure 1. On the encoder side, the input was the 
synthetic/in vivo MRF image with artifacts. The output of 
the encoder was T1, T2, and proton density (PD) estimates. 
The encoder was a multi-layer perceptron (MLP) with four 
fully connected layers implemented with 1 × 1 convolution 
layers. The width of fully connected layers was 512 and 
the activation was RELU. This structure was used in our 
previous study for T1 and T2 quantifications (18). Two 1 × 1 
convolutional layers and two 2 × 2 convolution layers were 
used to recreate artifact-free image from T1, T2, and proton 
density values on the decoder side. Third layer features 
on the encoder side were used to gate (via multiplication) 
decoder side features as shown in Figure 1. Such by-passing 
and gating allowed information to flow from the encoder to 
the decoder. 

Synthetic Data Formation and Model Training
Synthetic data were simulated using dictionary elements 

filled in some artificial shapes in the image domain as 
shown in Figure 2. Artifact simulation was based on the 
method used in our previous study (18). Briefly, artifacts 
were randomly picked dictionary elements times random 
weights. When training the network, input images had 
artifacts added. Meanwhile, output images had no artifacts 

Fig. 1. Diagram showing the deep learning model used in this study. The model contained eight convolution layers. The first 
four 1 × 1 convolution layers served as the encoder that converted raw images into T1, T2, and proton density parameters. 
The other four convolution layers projected T1 and T2 parameters to the original raw image space. A residual connection 
was used on the network's left side to improve training efficiency and convergence. A gate structure, i.e., multiplication, was 
used on the right side to combine the features from the right side with those from the decoder layer. 
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as shown in Figure 2. We defined two loss terms: MRF 
loss for T1, T2, and PD quantification (i.e., Loss_MRF) and 
image reconstruction loss for artifact reduction on input 
images (i.e., Loss_recon). We used the mean square error 
function (i.e., tensorflow ‘mean_squared_error’ function) 
for training these two loss terms. Finally, the deep learning 
model learned to remove artifacts and project the image 
onto the nearest elements in a dictionary, i.e., the proximity 
operator for regularization. Deep learning model training 
was performed in tensorflow software on a laptop computer 
with one RTX 2080 NIVIDIA graphic card. The reconstruction 
was performed on a workstation equipped with a 50-core 
CPU, 512 G RAM, and a P6000 NIVIDA graphic card.  

RESULTS

In vivo Brain MRF
The proposed method was first evaluated with brain MRF 

data as shown in Figure 3. Brain MRF data had a relatively 
high signal to noise ratio and allowed reliable estimation 
of T1 and T2 maps even with only 400 dynamics used in 
reconstruction. Meanwhile, direct NUFFT caused a slight 
increase in random fluctuation on the T2 map, which was 
reduced by the proposed method.

In vivo Prostate MRF
The proposed method was also applied to prostate MRF 

data as shown in Figure 4. The NUFFT on both 1000 and 

Fig. 2. Synthetic MRF images with/without artifacts were used to train the deep model. (First row) T1 and T2 were randomly 
placed in artificial shapes in a 32 × 32 matrix. T1 and T2 labels were from a dictionary that was simulated using extended 
phase graph. (Second row) Raw images with singular value decomposion compression. Four singular value components (SVs) 
were plotted. Raw images with artifacts served as input of the deep learning model. (Third row) Four SVs for raw image 
without artifacts. Artifact-free images were considered as the output of the deep learning model in this study. The deep 
learning model was trained to remove artifacts in images.
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Fig. 3. The proposed deep learning approach was applied to brain MRF data. Zoom-in views were from the center area. 
Direct NUFFT on 400 dynamic data showed slightly increased random fluctuations in T2 maps. The proposed method 
effectively reduced such random fluctuations in T2 maps, showing a strong de-noising effect on T1 and T2 maps. Difference 
maps measured discrepancies between 1000-dynamic NUFFT results and 400-dynamic NUFFT or proposed methods.

Fig. 4. The proposed deep learning approach was applied to prostate MRF data. Zoom-in views were from the center area. 
Direct NUFFT on 400 dynamic data showed increased random fluctuations in both T1 and T2 maps. The proposed method 
effectively reduced random fluctuations. The difference maps measured discrepancies between 1000-dynamic NUFFT results 
and 400-dynamic NUFFT results or proposed methods.
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400 dynamics datasets had relatively high fluctuations. The 
proposed method suppressed these fluctuations in both T1 
and T2 maps. Results were consistent with the observation 
in brain MRF. NUFFT results for 1000 dynamic datasets were 
used as reference. The slight increase in difference between 
the proposed method and reference reflected a strong de-
noising effect of the proposed method on parameter maps. 
In addition, Figure 5 shows the algorithm rapidly converged 
to the optimal solution in 25 iterations. The reconstruction 
time was 86 seconds per slice.

DISCUSSION

As in vivo data are typically used in training conventional 
deep learning MRF models, their generalizability could 
be limited to specific organs or diseases involved in the 
training process. The proposed method used synthetic data 
to train the deep learning model. The trained deep learning 
model could be applied to different organs. For example, 
a trained model was used for both brain and prostate in 
this study, showing that a single model could be applied 
to MRF for two organs. Prostate scan and brain scan had 
different coil sensitivity profiles, causing varied encoding 
matrix in reconstructions. The proposed method could 
support reconstructions of two scan protocols using one 

deep learning model. Therefore, application of the proposed 
method was just like conventional parallel imaging and 
compressed sensing approaches. Such improvement greatly 
simplified the experimental design, allowing one deep 
learning model to be generalizable for different applications 
in vivo.

The method also supported different MRI encoding 
settings such as image resolutions, undersampling masks, 
and radiofrequency coils. The encoding matrix was used in 
the fidelity term, which was outside and independent of 
the deep learning model. The encoding matrix contained 
coil sensitivity, trajectory, and undersampling mask. It was 
changeable during reconstruction, i.e., the deep learning 
model could be applied to different experiments without 
needing re-training of the model. In this study, brain and 
prostate MRF datasets were acquired with totally different 
brain and dorsal coils. However, they were reconstructed 
with the same deep learning model and algorithm. The 
same deep learning model could be used in all MRF 
reconstructions, demonstrating its great flexibility and 
generalizability in clinical applications. Therefore, the deep 
learning model could perform artifact removal and support 
changeable MRF acquisition settings.

In summary, we used an MLP-encoder to perform 
pixel-wise encoding. We empirically found that the MLP 
maintained spatial resolution. Meanwhile, we used kernel 
size of convolutional layers on the decoder side to adjust 
denoising vs. spatial smoothing effect. The MLP might not 
be the only way for MRF. Generally, fully convolutional 
networks should be supported by the proposed architecture. 
In addition, we used the same weight for all iterations. This 
ensured a small network that was end-to-end trainable. 
The number of iterations for the proposed network was also 
changeable during reconstruction.

In conclusion, we demonstrated a hybrid iterative MRF 
reconstruction method that was flexible with different 
acquisition settings, such as radiofrequency coils and 
generalizable for in vivo applications. 
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