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Radiomics and Deep Learning in 
Brain Metastases: Current Trends and 
Roadmap to Future Applications

INTRODUCTION

Brain metastases are the most common type of intracranial tumours in adults; 
they occur in 20-40% of patients with systemic cancer and are a major cause of 
morbidity and mortality. Majority of brain metastases occur in patients with primary 
lung, breast, and colorectal cancers, as well as in those with melanoma or renal cell 
carcinoma (1). For managing patients with brain metastases, early and accurate 
diagnosis using magnetic resonance imaging (MRI) is crucial for determining potential 
treatment strategies. Various treatment approaches such as surgical resection, 
stereotactic radiosurgery (SRS), whole brain radiation therapy (WBRT), targeted 
molecular therapy, and immunotherapy, have all been shown to increase survival in 
eligible patients compared to those who go untreated (2-5). In recent years, treatment 
professionals have overcome previous scepticism as it relates to the management of 
patients with brain metastases, which was formerly considered a single disease with 
a uniform outcome; it is now well recognized that the prognosis for patients with 
brain metastases is vastly heterogeneous. In the Graded Prognostic Assessment (GPA) 
(6), a graded prognostic index for patients with brain metastases, the number of brain 
metastases is included as a prognostic factor in primary lung cancer, melanoma, and 
renal cell cancer, reflecting the pivotal role of imaging in determining prognosis.

In this era of precision medicine, brain metastases should be accurately detected, 
segmented, and identified according to their molecular markers, prognosis, and response 
to treatment. Advances in artificial intelligence technologies have led to the gradual 
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conversion of medical images into high-dimensional data 
appropriate for data mining and data science techniques. 
Radiomics and deep learning (DL) expands the role of 
imaging in the assessment of brain metastases beyond 
traditional visual image analysis performed by radiologists 
by performing laborious tasks such as brain metastases 
detection and segmentation, and obtaining additional 
diagnostic and prognostic information from images. 

In this article, we aim to review current radiomics and 
DL research as they relate to brain metastases and provide 
a roadmap for future applications. Additionally, because 
we consider the clinical purpose of radiomics and DL as 
important as the cutting-edge technique itself, we also 
briefly introduce the clinical background and unmet clinical 
needs in each section.

Brief Introduction of Radiomics and DL Research in 
Brain Metastases

Radiomics extracts high-dimensional quantitative data 
reflecting imaging phenotypes from tumor segmentation 
that aims to support clinical decision-making. Briefly, 
radiomic features include shape, first-order features, 
and second-order features; importantly, radiomics can 
often identify hidden information that is inaccessible to 
radiologists (7, 8).

DL is a subset of machine learning that is based 
around neural network structure. Unlike radiomics, 
which require predefined handcrafted features, DL is 
based on representation learning in which the algorithm 
automatically discovers the representations needed for 
object detection or classification from the provided data. 
Convolutional neural networks (CNN) are currently the 
most popular type of DL architecture in medical imaging; 
these networks consist of an input layer, hidden layers, and 
an output layer. Figure 1 shows schematic illustrations of 
radiomics and DL pipelines.

Briefly, DL is applied in tasks such as automatic 
detection, segmentation, or image synthesis, whereas both 
radiomics and DL can be applied in classification tasks. 
Current research representative of the state of radiomic 
and DL studies in brain metastases are summarized in 
Table 1. Representative research was based not only on 
performance, but also on the validation method (internal 
validation methods such as cross-validation or split train-
test sets produce overly optimistic results (7), studies with 
external validation were preferred although performance 
was often lower), and pathologic confirmation methods 
(as it relates to determining the molecular status of brain 

metastases, research including molecular status that was 
determined from brain tissues themselves, rather than the 
primary tumor, was preferred). Figure 2 shows the original 
research regarding radiomics and DL in brain metastases 
according to the (a) published year and (b) research 
category. The PubMed MEDLINE database was used to 
search and collect all original research papers focusing on 
radiomics or DL published before January 15, 2021 using 
the following search terms: (“brain metastasis” OR “brain 
metastases”) AND (“radiomic” or “deep learning” or “neural 
network” or “machine learning”). Articles which were not in 
field of interest or review articles were excluded. 

Automatic Detection and Segmentation of Brain 
Metastases 

Due to the unique characteristics of brain metastases as 
compared to other common brain tumors such as gliomas 
or meningiomas, automatic detection of brain metastases 
is challenging. Brain metastases may be substantially 
smaller than gliomas and often present at multiple sites; 
however, it is important to note that the detection of even 
subcentimeter lesions is crucial for choosing the correct 
treatment strategy, especially in case of SRS (8). Moreover, 
brain metastases near the leptomeningeal vessels may be 
missed or, conversely, leptomeningeal vessels may mimic 
metastases and be misidentified as such (9, 10). The 
segmentation of the brain metastases is also important for 
response assessment. Although the target lesions according 
to the Response Assessment in Neuro-Oncology Brain 
Metastases (RANO-BM) are currently determined using 
bidimensional measurements of contrast-enhancing lesions, 
the RANO-BM encourages the inclusion of volumetric 
response when feasible (11). However, manual detection 
and segmentation of brain metastases by radiologists or 
clinicians is not only laborious, but is also prone to error; 
interobserver variability in target volume delineation has 
been reported in SRS (12), and manual segmentation of all 
lesions is time-consuming. Thus, there is a strong unmet 
clinical need for processes that facilitate the automatic 
detection and segmentation of brain metastases that can 
be met with DL methods.

Various studies have used DL systems for the detection 
of brain metastases, most of which are nicely summarized 
in a recent meta-analysis (13). These studies have applied 
CNNs (14-19), fully convolutional networks (20), or single-
shot detector models (21), with a pooled proportion of 
sensitivity and false-positive (FP) rate per patient of 90.1% 
(95% confidence interval 84-95%) and 10, respectively 
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(13). Although these results are promising, DL research 
that performed subgroup analysis according to size 
showed poor performance in detecting small metastases; 
one study reported a sensitivity of 15% for identifying 
brain metastases < 3 mm (21), while another reported a 
sensitivity 50% for identifying lesions smaller than < 7 
mm (16). The suboptimal performance of the DL models, 
especially with regard to small lesions, may hamper real-
world integration of these models in clinical practice. Most 
of these studies implemented only contrast-enhanced 
three-dimensional (3D) gradient echo (GRE) images, which 

could be one cause of the low performance. A previous 
meta-analysis has shown that brain metastases can be 
more easily detected using contrast-enhanced spin-echo 
(SE) with or without black-blood (BB) imaging techniques 
than via GRE images, especially in cases with small lesions (< 
5 mm) (22). A recent study implemented not only 3D GRE, 
but also 3D BB images and showed an overall sensitivity of 
93.1%; for metastases < 3 mm, ≥ 3 mm and < 10 mm, and 
≥ 10 mm, the sensitivities were 82.4%, 93.2%, and 100%, 
respectively (23). The FP per patient was 0.59 in the test, 
which is the lowest reported of any study to date. With the 

a

b

Fig. 1. Schematic illustration of radiomics and CNN pipelines. (a) In radiomics, tumor segmentation is performed after 
preprocessing. Radiomic features such as shape, first-order features, and second-order features are extracted. Feature 
selection and classification is then performed. (b) A CNN is composed of several different kinds of layers. A convolutional 
layer creates a feature map for pattern recognition of the image by applying a filter that scans the input image a few pixels 
at a time. A pooling layer scales down the amount of information the convolutional layer generated for each feature map 
and maintains the essential information. The process of convolution and pooling repeats several times. A fully connected 
layer applies weight over the input to predict an accurate label and generates final probabilities to determine a class for the 
image.
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Table 1. Current Research Representative of the State of Radiomics and DL Application in Brain Metastases

Topic Methods References
Data 

(train:test)
Outcomes Test performance

External 
validation

Imaging modality

Automatic 
detection 
and/or 
segmentation

DL Zhou et al. 
(21) 

266 
(212:54)

Brain metastases 
detection

Sensitivity = 81%
FP/patient = 6

No 3D contrast-enhanced 
GRE

DL Xue et al. 
(20) 

1652 
(1487:165)

Brain metastases 
detection and 
segmentation

Sensitivity = 96%
FP/patient = n/a
Dice = 0.85 (calculated 
in lesions > 5 mm)

No 3D contrast-enhanced 
GRE

DL Park et al. 
(23) 

282 
(188:94)

Brain metastases 
detection and 
segmentation

Sensitivity = 93.1%
FP/patient = 0.59
Dice = 0.82

No 3D contrast-enhanced 
GRE, 3D contrast-
enhanced BB

Differential 
diagnosis

Radiomics Bae et al. 
(36) 

248 
(166:82)

Single brain metastasis, 
glioblastoma

Overall AUC = 0.96 Yes T2WI, 3D contrast-
enhanced GRE

DL Shin et al. 
(37) 

741 
(598:143)

Single brain metastasis, 
glioblastoma

AUC = 0.835 Yes T2WI, 3D contrast-
enhanced GRE

Predicting 
origin

Radiomics Kniep et 
al. (40) 

189 Primary tumor type AUCs = ranging from 
0.64 (for NSCLC) to 
0.82 (for melanoma)

No Precontrast T1WI, FLAIR, 
3D contrast-enhanced 
GRE or 3D BB

Predicting 
molecular 
marker

Radiomics Park et al. 
(49) 

51 (31:20) EGFR mutation in NSCLC 
brain metastases

AUC = 0.73 No DTI, 3D contrast-
enhanced GRE

Radiomics Ahn et al. 
(48) 

61 
(189:21)†

EGFR mutation in NSCLC 
brain metastases

AUC = 0.87 No Contrast-enhanced T1WI*

Radiomics Shofty et 
al. (52) 

53 BRAF mutation in 
melanoma brain metastases

AUC = 0.78 No 3D contrast-enhanced 
T1WI*

Prognostication Radiomics Huang et 
al. (55) 

161 PFS for NSCLC brain 
metastases treated with 
SRS

HR = 0.71 (PFS) No Contrast-enhanced SE

Radiomics Bhatia et 
al. (59) 

105 
(88:17)

OS for melanoma brain 
metastases receiving 
immune checkpoint 
inhibitors

HR = 0.68 (OS) No Contrast-enhanced T1WI*

Radiation 
necrosis vs. 
progression

Radiomics Peng et al. 
(66) 

82 Radiation necrosis AUC = 0.81 No FLAIR, contrast-enhanced 
T1WI

Radiomics Lohmann 
et al. (62) 

52 Radiation necrosis AUC = 0.96 No Contrast-enhanced 
T1WI*, FET PET

Radiomics Hotta et 
al. (64) 

41 Radiation necrosis 
(including patients from 
both brain metastases 
and gliomas)

AUC = 0.98 No MET-PET

Treatment 
response 
assessment

Radiomics Mouraviev 
et al. (73) 

87 Local failure after SRS AUC = 0.79 No FLAIR, contrast-enhanced 
T1WI*

Radiomics Cha et al. 
(74) 

110 Responder vs. 
nonresponder after SRS

AUC = 0.86 No CT

Image synthesis DL Jun et al. 
(81) 

75 
(29:36)

Synthetic BB imaging No significant 
difference in figure 
of merits between 
original BB and 
synthetic BB (0.94 vs. 
0.97, P = 0.214) 

No 3D contrast-enhanced 
GRE, 3D BB

AUC = area under the receiver operating curve; BB = black-blood; CT = computerized tomography; DL = deep learning; EGFR = epidermal growth factor receptor; FLAIR 
= fluid-attenuation inversion recovery; FP = false-positive; GRE = gradient echo; HR = hazard ration; MET = C11-methionine; n/a = not available; NSCLC = non-small 
cell lung cancer; OS = overall survival; PET = positron emission tomography; PFS = progression-free survival; SE = spin echo; SRS = stereotactic radiosurgery; T1WI = T1-
weighted imaging. *GRE or BB not specified. †Indicating the number of brain metastases in the training and test set; the number of patients in the training and test set 
was not specified. 
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highest sensitivity for detecting small lesions, this study 
shows promise for future clinical applications. However, 
the research was performed from a single-institutional and 
relatively small dataset, which requires further external 
validation to prove its robustness. Moreover, 3D BB imaging 
has limitations because it is not technically feasible with all 
MRI instruments.

Several DL studies have performed segmentation along 
with automatic detection of brain metastases. Previous 
studies have reported Dice coefficients ranging from 0.77 
(15), 0.79 (16), 0.82 (23), and 0.85 (20) in segmenting brain 
metastases. However, the study that reported the highest 
Dice coefficient, 0.85, did not included brain metastases 
smaller than 5 mm for this calculation (20); previous 
work has shown that smaller lesions are associated with 
lower Dice coefficients (24, 25). Nonetheless, these Dice 
coefficients are comparable to Dice coefficients from glioma 
automatic segmentation (26), and suggest that integration 
of segmentation information based on DL in the routine 
clinical practice may be feasible.

Differential Diagnosis

Differential Diagnosis with Glioblastoma
Brain metastases and glioblastoma are the most common 

malignant brain tumors in adults (27-29). In conventional 
MRI, differentiating single brain metastases from a 
glioblastoma by radiologists remains a challenge because 
both can manifest as a ring-enhancing mass with internal 
necrosis and peritumoral edema. Furthermore, up to 30% 
of brain metastases present as an initial manifestation of 
systemic malignancy (30) and approximately half present 

as a single lesion (1). This may cause diagnostic difficulties 
in differentiating between single brain metastases and 
glioblastomas.

To date, several radiomics studies have been performed 
to differentiate single brain metastases from glioblastoma. 
Majority of these studies were performed in a single 
institution with a split-sample validation method (31-35) 
save for one study which performed external validation, 
albeit using a smaller dataset (36). The latter study 
included segmentations from both contrast-enhancing and 
peritumoral edema on contrast-enhanced T1-weighted 
images (T1WI) and T2-weighted images (T2WI), and utilized 
deep neural network for classification, resulting in an area 
under receiver operating characteristic curve (AUC) of 0.96 
in external validation (36). Considering the fact that the 
contrast-enhancing area and the peritumoral edema show 
different underlying pathophysiology in metastases and 
glioblastomas, implementation of both contrast-enhancing 
and peritumoral T2 hyperintense masks showed the highest 
diagnostic performance in the study as compared to DL 
using only a contrast-enhancing mask (AUC 0.89) or 
peritumoral T2 hyperintense mask (AUC 0.83), respectively. 
The radiomics model showed overall higher performance 
than radiologists (AUCs of 0.77 and 0.90, respectively). 

One study performed DL based on ResNet-50 to 
differentiate single brain metastases from glioblastomas 
(37). Using contrast-enhanced T1WI and T2WI with 
rectangular regions of interest, the AUC of the DL model 
was 0.835 in external validation, which was higher than 
those of neuroradiologists (AUCs of 0.768 and 0.708, 
respectively). 

a b

Fig. 2. Graphs showing the number of published research articles regarding radiomics and DL in brain metastases in the 
PubMed database according to the year published (a) and the study category (b).
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Predicting the Origin of Brain Metastases
In 30% of patients with brain metastases, brain 

metastases may be diagnosed before primary tumor 
diagnosis (precocious presentation) or in conjunction with 
primary tumors (synchronous presentation) (38). Accurate 
identification of the primary tumor origin is crucial for 
treatment planning and prognosis predictions. Moreover, 
diagnostic decision making for patients with unknown 
primary tumor origin at the time of brain metastases 
diagnosis may require time-consuming testing, including 
chest/abdomen computerized tomography (CT), and 
positron emission tomography-CT (PET-CT). For these 
patients, advanced imaging-based tissue differentiation 
could contribute to more focused primary lesion detection, 
thereby accelerating therapy initiation.

In a feasibility study from a small single center dataset 
with nested cross-validation, 3D radiomic features from 
contrast-enhanced T1WIs showed promising results in 
differentiating the origin of brain metastases, with an 
overall AUC of 0.87 (39). In another study with a larger 
dataset from a single center which used 10-fold cross-
validation, precontrast and contrast-enhanced T1WIs as 
well as fluid-attenuation inversion recovery (FLAIR) images 
were implemented. AUCs ranged between 0.64 (for non-
small cell lung cancer) and 0.82 (for melanoma) (40). The 
prediction performance was superior to the classification 
performed by radiologists.

Prediction of Molecular Markers: towards "Virtual Biopsy"
Recent advances in targeted therapies have led to a 

paradigm shift in the diagnoses of patients with brain 
metastases. Figure 3 shows the genomic landscape of brain 
metastases according to primary tumor. For example, the 
use of next-generation systemic tyrosine kinase inhibitors 
(TKIs) for epidermal growth factor receptor (EGFR) in non-
small cell lung cancer (NSCLC) showed greater intracranial 
activity than non-targeted local treatments against brain 
metastases from tumors with EGFR mutations (41). Gene 
expression analyses have identified distinct molecular 
subtypes of breast cancer (luminal A, luminal B, HER2 
positive, and triple negative), each with unique metastatic 
patterns; patients with HER2-positive and triple-negative 
tumors are most likely to develop brain metastases (42). 
In melanomas, BRAF mutant tumors may undergo BRAF-
targeted therapy with improved survival (43, 44).

One may ask why we should attempt to determine 
information about the molecular status of brain metastases, 
because in the majority of cases, the molecular markers 

are already obtained from the primary tumor. Excluding 
rare cases in which biopsy from the primary tumor is not 
feasible, obtaining noninvasive information about the 
molecular marker status of the brain metastases themselves 
may not seem necessary despite a dearth of evidence to 
the contrary. Neuroradiologists often fail to acknowledge 
the concept of “inter-tumoral heterogeneity” between the 
primary tumor and brain metastases. Recent studies have 
shown that primary tumors and brain metastases do not 
always share the same mutation status; in 53% of cases, 
there were alterations in the brain metastases that were not 
detected in the matched primary-tumor sample, while the 
spatially and temporally separated brain metastasis sites 
were genetically homogeneous (45). One of the mechanisms 
that has been proposed to explain the heterogeneity of 
primary tumors and brain metastases suggests that the 
metastatic lesion can arise through different genetic 
drafts or subclonal selections within the primary tumor 
(46). The molecular status of a minor population with 
acquired metastatic ability may result in discordance in 
the EGFR mutation status between primary and metastatic 
tumors. Figure 4 shows a model of primary intra-tumoral 
heterogeneity giving rise to brain metastases characterized 
by inter-tumor heterogeneity. 

Although the European Association of Neuro-Oncology 
(EANO) recommends tissue diagnosis from brain metastases 
in order to evaluate the molecular marker status even 
when the markers have already been assessed from the 
extracranial tumor (47), biopsy is invasive and not feasible 
in many cases. The difficulty of routine brain biopsies 
promotes the integration of future "virtual biopsy" methods 
based on quantitative image analysis.

There have been several studies that aimed to predict the 
molecular status of brain metastases (48-52), and among 
these studies, two studies performed radiomics analysis of 
molecular information gathered directly from brain tissue 
(49). Most of the studies were performed to evaluate the 
EGFR mutation status of patients with lung cancer from a 
single institution (48-51), and a radiomics model using the 
FLAIR sequence yielded an AUC of 0.87 in the split-sample 
test set (51). The study that obtained the EGFR molecular 
status from pathologically confirmed brain tissue showed a 
lower performance with an AUC of 0.73 in the split-sample 
test set using diffusion tensor imaging and contrast-
enhanced T1WI (49). Notably, the overall discordance rate 
between primary lung cancer and corresponding brain 
tumors among available patients was 12% (51). Another 
study additionally classified the anaplastic lymphoma kinase 
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(ALK) and KRAS (Kirsten rat sarcoma) mutation statuses 
from lung cancer and brain metastases using contrast-
enhanced T1WI and FLAIR, with an AUC of 0.915 and 0.985, 
respectively, via leave-one-out cross-validation. On the 
other hand, another study that made predictions as to the 

BRAF mutation status in melanoma brain metastases from 
pathologically confirmed brain tissue using data from two 
institutions via contrast-enhanced T1WI reported an AUC of 
0.78 in 5-fold cross-validation (52).

Fig. 3. Genomic landscape of brain metastases according to primary tumor. Because there was a scarcity of research in 
the imaging findings according to molecular markers, the radiogenomic landscape is not specified. Numbers in parenthesis 
indicate the percentage of molecular markers in the brain metastases itself, rather than the percentage in the primary 
tumor. ALK = anaplastic lymphoma kinase; EGFR = epidermal growth factor receptor; ER = estrogen receptor; HER2 = 
human epidermal growth factor receptor 2; PR = progesterone receptor

Fig. 4. Model of primary intra-tumoral heterogeneity giving rise to brain metastases characterized by inter-tumor 
heterogeneity.
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Prognostication
As mentioned in the introduction, the Graded Prognostic 

Assessment (GPA) (6) is the most prominent prognostic 
index, including the number of brain metastases as a 
prognostic factor in primary lung cancer, melanoma, and 
renal cell cancer. However, the number of brain metastases 
is rather simplistic information compared with the high-
dimensional data available through imaging. Radiomic 
features and DL methods are not yet widely adopted in 
clinical prognostication models despite their enormous 
potential to capture underlying tumor biology and stratify 
outcomes.

SRS is a commonly used treatment strategy for patients 
with small brain metastases that has demonstrated 
improved local control and the ability to spare surrounding 
normal tissues (53). Nevertheless, when considering SRS, 
models such as GPA are predominantly analysed with overall 
survival (OS) and may be influenced by the competing risk 
of death as it relates to the systemic progression of disease. 
Moreover, predictions for therapeutic responsiveness vary 
substantially (54), promoting the development of more 
personalized models. Among radiomics studies that sought 
to predict progression-free survival (PFS) and/or OS in brain 
metastases treated with SRS, (55-57) the largest study was 
performed in 161 patients with NSCLC brain metastases in 
a single institution using contrast-enhanced T1WI (55). A 
multivariable cox proportional hazards model without any 
type of validation revealed that a higher zone percentage 
(HR = 0.71, P = 0.022) was independently associated with 
a longer PFS. The other two studies performed proof-
of-concept radiomics studies on smaller datasets, in 48 
patients (NSCLC and melanoma brain metastases) and 
44 patients (breast cancer brain metastases), respectively 
(56, 57). The level of enhancing tumor volume was 
independently associated with a longer OS (HR = 0.38, 
P = 0.006) in the former study, whereas kurtosis was 
independently associated with a longer PFS (HR = 0.72, P = 
0.008) in the latter study.

In melanoma brain metastases, immune checkpoint 
inhibitors such as cytotoxic T-lymphocyte antigen 4 (CTLA-
4) inhibitors and programmed cell death protein 1 (PD-
1) inhibitors have dramatically improved the prognosis 
and treatment of affected patients (58). However, clinical 
data show that there is heterogeneity in patient response 
to immune checkpoint inhibitors. A radiomics study was 
performed to predict OS in melanoma brain metastases 
treated with immune checkpoint inhibitors using contrast-
enhanced T1WI (59). The mean Laplacian of Gaussian 

(LoG) feature showed significance in univariable analysis 
(HR = 0.68, P = 0.001), but not in multivariable analysis 
incorporating lactate dehydrogenase levels and performance 
status. The mean LoG was confirmed to be significant in an 
independent dataset. 

Treatment-Related Change and Treatment Response

Differentiation of Radiation Injury from Tumor Progression
Aggressive treatment of brain metastases with SRS has 

improved the median survival time for affected patients 
considerably (60), however, radiation necrosis occurs in 
up to 34% of cases at 24 months after treatment and 
is associated with significant morbidity in 10-17% of 
cases (61). Radiation necrosis appears as an enhancing 
mass with surrounding edema on MRI and presents with 
severe neurologic disturbances that closely mimic tumor 
progression. Because tumor progression may require 
further treatment and radiation necrosis can be treated 
conservatively, the ability to distinguish the two after SRS 
in brain metastases is clinically important.

There are various studies differentiating recurrent 
metastases from radiation necrosis. Due to the difficulty 
of identifying radiation, in addition to conventional MRI, 
various imaging modalities, such as static O-(2-[18F] 
fluoroethyl)-L-tyrosine (FET) PET or 11C-methionine PET-CT, 
have been applied in these models (62-64). One recent MRI 
based study used a "delta" radiomics model from both T2WI 
and contrast-enhanced T1WI, representing the changes in 
features from pretreatment to posttreatment MRI, with 
an AUC of 0.73 in leave-one-out cross-validation (65). 
Another study using FLAIR and contrast-enhanced T1WI 
reported an AUC of 0.81 in leave-one-out cross-validation 
(66). Among two different studies using FET-PET (62, 63), 
combined FET PET/CE-MRI radiomics showed an AUC of 0.79 
in 10-fold cross-validation in one study, and showed higher 
performance than either modality alone (62). One study 
used 11C-methionine PET-CT to differentiate radiation 
necrosis from recurrent brain tumors (which included 
both brain metastases and gliomas). The AUC of the 10-
fold cross-validated radiomics model was 0.98, which was 
higher than the AUC of 0.73 according to the tumor-to-
normal cortex ratio (64). 

Predicting Treatment Response in SRS
Randomized clinical trials have shown that SRS alone 

results in less neurocognitive dysfunction and a better 
quality of life than SRS plus WBRT without a significant 
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decrease in survival (67-70). Thus, SRS has emerged as 
a common treatment in patients with a limited number 
brain metastases (71), and EANO guidelines state that the 
absolute number of brain metastases is becoming less 
crucial in the choice to use SRS (47), further promoting 
its use. However, these trials have also demonstrated that 
SRS alone is associated with increased local failure as well 
as a higher rate of new, distant brain metastases than SRS 
plus WBRT (67, 68, 70). Notably, among the randomized 
trials, the one-year local failure rates ranged between 27-
33% for SRS alone vs 0-11% for SRS plus WBRT (67, 68, 
70). Thus, prediction of local failure in SRS may aid in 
treatment decision making; patients at high risk of local 
failure in SRS may benefit from additional treatments 
such as hippocampal-avoidance WBRT, which has shown 
comparable disease control to SRS while reducing the 
neurocognitive dysfunction of WBRT (72).

One study performed radiomics analysis to predict local 
failure per-lesion in brain metastases treated with SRS via 
MRI using contrast-enhanced T1WI and FLAIR, showing 
an AUC of 0.79 using leave-one-patient validation with 
a model combining radiomic and clinical features (73). 
Another study using CT radiomics demonstrated a CNN-
based radiomics model with an AUC of 0.86 in a split-
sample test set that generated accurate predictions of SRS 
response per-patient (74). In a study using 11C-methionine 
PET-CT in a small dataset, the radiomic features were 
extracted from a fully automatically segmented biological 
target volume; the radiomics model showed an AUC of 
0.73 to predict SRS response per-patient via 5-fold cross-
validation (75).

Differentiation of Pseudoprogression from Tumor 
Progression in Immunotherapy

In patients with brain metastases using immune 
checkpoint inhibitors, such as CTLA-4 inhibitors, PD-1 
inhibitors, and programmed cell death protein ligand 1 
(PD-L1) inhibitors, pseudoprogression is one of the most 
critical clinical and imaging challenges. Pseudoprogression 
is a tumor-related response to treatment that includes the 
intratumoral infiltration of cytotoxic T cells (CD8+) (76). A 
transient appearance of new contrast-enhancing lesions at 
either local or even distant sites can occur, and is defined as 
an objective tumor response after an initial increase in total 
tumor volume or the appearance of new lesions, even at 
distant sites (77). The immunotherapy Response Assessment 
in Neuro-Oncology (iRANO) criteria stipulates that early 
increases in lesion size and/or the development of new 

lesions within 6 months of immunotherapy does not define 
disease progression unless those changes are confirmed on 
follow-up MRI (78). 

To date, there has been lack of radiomics or DL studies 
that attempt to differentiate pseudoprogression from 
tumor progression in brain metastases patients undergoing 
immunotherapy. In a recent study with metastatic 
melanoma patients (excluding brain metastases patients), 
a combined blood and PET-CT radiomics model showed 
an AUC of 0.82 in nested cross-validation for predicting 
pseudoprogression (79).

Image Synthesis
Considering the cost of scanning high-quality single 

modality images or homogeneous multimodality images, 
medical image synthesis methods have been extensively 
explored for clinical applications (80). To date, one 
study has focused on synthetic 3D BB imaging of brain 
metastases. Usually, in brain metastases protocols, 3D BB 
imaging is performed in addition to 3D GRE imaging, which 
requires additional scan time. Moreover, 3D BB imaging is 
not available from some MR vendors. Thus, the study has 
proposed a deep-learned 3D BB imaging method by which 
3D CNN outputs based on 3D GRE imaging can be used for 
detecting brain metastases in a small institutional dataset 
(81). The figure of merits, which indicate the diagnostic 
performance of radiologists, were 0.97 with deep-learned 
BB and 0.94 with the original BB in a split-sample test 
set, suggesting that deep-learned BB imaging is highly 
comparable to the original BB imaging.

Another study, which was not performed in brain 
metastases but in glioma patients and healthy subjects, 
created virtual contrast enhancement from noncontrast 
multiparametric brain MRI with Bayesian DL (82). The 
virtual contrast enhancement imaging yielded a sensitivity 
and specificity of 91.8% and 91.2%, respectively, and 
a mean AUC, peak signal-to-noise ratio, and structural 
similarity index of 0.97, 22.97, and 0.87, respectively, 
via 10-fold cross-validation. Although virtual contrast 
imaging may seem to be more difficult or impossible in 
brain metastases imaging, which includes multiple and 
small lesions compared to the typically single mass to be 
identified in glioma imaging, it could be an interesting 
aspect to investigate. 

Promises, Pitfalls, and Future Roadmap
Radiomics and DL, given their ability to discern patterns 

and combine information, show promise for the future 
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of radiology and precision medicine. An example of an 
ideal artificial intelligence-based system integrated into 
imaging protocols to improve treatment decisions in brain 
metastases is shown in Figure 5. 

There is vast room for improvement in radiomics and DL as 
they related to the proper management of brain metastases. 
Despite the increasing number of publications, there are 
a relatively small number of studies performed in brain 
metastases compared to the many published that examine 
gliomas; this leaves a great deal of unexplored territory that 
could potentially yield substantial improvements in patient 
outcomes. 

Forward Guidance 
Currently, most research on brain metastases are technical 

feasibility studies without the true external validation 
required to prove robustness (13). For clinical translation 
of radiomics and DL studies, methodology standardization 
and quality improvements are necessary. Authors should 
move to investigate the performance of these models in 

real-world clinical settings and determine how they affect 
patient management rather than simply building and testing 
models. Currently, several guidance materials already exist 
(83, 84), and AI- and machine learning-specific guidelines 
to the STARD statement (STARD-AI) and TRIPOD statement 
(TRIPOD-ML) are being developed (85, 86).

Currently, as they relate to radiomics research, specific 
guidance materials such as the Image Biomarker 
Standardization Initiative (IBSI) (87) and radiomics quality 
score (RQS) list (88, 89) suggest mandatory steps for 
radiomics analyses. 

Considerations Regarding MRI Application of Radiomics 
and DL

Real-world MRIs are acquired in different vendors, 
coils, acquisitions, and scanning protocols, leading to 
a heterogeneous dataset that could compromise the 
performance and reproducibility of radiomics and DL models. 
Moreover, conventional MRIs are acquired in arbitrary units, 
and different signal intensity normalization methods may 

Fig. 5. Example of future radiomics- and deep learning-implemented brain metastases imaging and clinical management 
workflow in a EGFR-wildtype NSCLC brain metastasis. After initial imaging, automatic detection and segmentation would be 
performed, revealing the number and volumetric measurement of brain metastases. Virtual biopsy could then be performed 
predicting the molecular marker of the brain metastases separate from the primary tumor, and personalized prediction of 
survival could be performed by integrating all relevant clinical data. Optimal treatment could then be recommended (which 
is SRS in this example). On follow-up imaging, response assessments can be performed, and an analysis system could 
generate a probabilistic differential of tumor progression or radiation necrosis.
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also affect overall performance (90). Although there is no 
golden rule for achieving multicenter reproducibility in 
radiomics and DL models, several ideas have been tested in 
clinical settings (91) and should be taken into consideration 
when planning future research.  

Techniques to overcome Insufficient Data in Artificial 
Intelligence

One glaring limitation of radiomics and DL systems for the 
identification of brain metastases is the insufficient amount 
of data. This is especially true from a molecular biology 
perspective as there are a very limited number of cases in 
which molecular status was confirmed directly from brain 
tissue. 'Data-hungry' radiomics and DL methods may not 
be easily applied, and well-designed multi-institutional 
datasets are indicated. 

Apart from larger multi-institutional datasets, many 
technical aspects can be applied to solve the problem of 
small datasets, such as transfer learning, meta-learning, 
or few-shot learning. Transfer learning is an alternative 
approach that uses pre-trained state-of-the-art CNN 
models, such as models trained from the ImageNet dataset, 
and is known to achieve a higher performance than those 
obtained by training CNNs from scratch (full-training) (92, 
93). Meta-learning aims to improve the learning algorithm 
itself given a series of training tasks from other unrelated 
sets (94). Few-shot learning can be considered a type of 
meta-learning that classifies new data having seen only a 
few training examples, which may be useful in rare diseases 
(95). Also, especially in a small data regime, incorporating 
domain knowledge may improve the performance (96). 
Generative adversarial networks (GAN) can also solve the 
problem by increasing sample size via synthetic image 
generation (97). As GANs are vulnerable to so-called 
“adversarial attacks (perturbations of the input which do 
not affect human recognition but change the output of 
the classifier)”, caution should be used when applying GAN 
generated data to CNN models (98).

From Supervised Learning to Unsupervised (or Semi-
supervised) Learning in DL

Although the majority of DL research in brain metastases 
is based on CNNs trained using a type of “supervised 
learning” (which infers a function from labeled training 
data consisting of a set of training examples), we speculate 
that the research paradigm will gradually shift from 
“supervised learning" to “unsupervised (or semi-supervised) 
learning” (which learns patterns from unlabeled data). 

Thus, GANs, which are generative models for unsupervised 
learning, may perform many tasks such as image synthesis, 
reconstruction, segmentation, and classification of brain 
metastases effectively (99). These systems are likely to 
slowly be integrated into future radiomics and DL research. 

Towards Explainability: Explainable Artificial Intelligence 
(XAI) in Radiomics and DL

Lastly, as future studies focus more heavily on the clinical 
application of radiomics and DL in brain metastases, the 
"black box” model, which generally provides no information 
about how neural networks arrive at their predictions, will 
not be suitable. Because such lack of transparency may be 
not acceptable by clinicians, the development of methods 
for visualizing, explaining, and interpreting radiomics and 
DL is required (100). Thus, we speculate that “explainable 
artificial intelligence (XAI)”, such as Local Interpretable 
Model Explanation (LIME) (101) and SHapely Additive 
exPlanations (SHAP) (102) will be integrated with existing 
radiomics models, while grad-CAM (103) and Randomized 
Input Sampling for Explanation of Black-box Models (RISE) 
(104) will be integrated with DL models. 

In conclusion, radiomics and DL are promising research 
areas likely to improve the diagnosis and treatment of brain 
metastases, and many studies, albeit the majority being 
proof-of concept or technical feasibility studies, show 
potential for future clinical implementation. For radiomics 
and DL to become valid clinical tools, their performance 
must be validated with clinical testing. It is crucial for 
neuroradiologists to understand current unmet clinical 
needs and appropriately investigate these powerful tools for 
use in clinical practice in the future. 
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