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AdaBoost tweaks the sample weight for each training set used in the iterative process, 
however, it is demonstrated that it provides more correlated errors as the boosting 
iteration proceeds if models’ accuracy is high enough. Therefore, in this study, we 
propose a novel way to improve the performance of the existing AdaBoost algorithm by 
employing heterogeneous models and a stochastic twist. By employing the heterogeneous 
ensemble, it ensures different models that have a different initial assumption about the 
data are used to improve on diversity. Also, by using a stochastic algorithm with a 
decaying convergence rate, the model is designed to balance out the trade-off between 
model prediction performance and model convergence. The result showed that the 
stochastic algorithm with decaying convergence rate’s did have a improving effect and 
outperformed other existing boosting techniques. 
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I. Introduction 
 
As the interest in the field of machine learning intensifies, the ensemble learning 

scheme has drawn much attention. The model ensemble includes all the schemes that 
try to combine several different models to produce a committee’s decision, in the sense 
that a mixture of models produces better results than a single model. From the human’s  
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point of view, it is similar to listening to the many experts. There are various 
methodologies to combine the models. Bootstrap aggregating chooses to combine 
several different classifiers that are trained with different bootstrapped training data at 
the same time. To put it in the same analogy, it is asking for the voter’s opinion where 
voters have bits and pieces of information. On the other hand, boosting takes an 
additive approach, where a classifier’s training information is passed on to the next 
iteration phase. Using the same analogy, it is the same as asking for the voter’s opinion 
one by one, during which the next voter gets the result of the previous voter. Because 
the ensemble scheme uses several models at once, the major advantage of boosting is 
that the researcher is free of investigating the best model that fits in every situation. 

It is natural to assume that each voter we ask would make their choices 
independently, in other words, the voters would choose their prediction result 
independently from others. It is known that the importance of diversity is more 
important than the quality of the individual voting component itself (Hsu, 2017). 
However, the original AdaBoost does not consider the correlation between the 
classifier’s results. Also, some variants of AdaBoost, such as that of Li et al. (2008) 
uses only one type of model to make a combined result. Machine learning models 
see data from a different perspective. Support vector machine tries to find the best 
hyperplane that separates the data. The best hyperplane is attained by choosing the 
hyperplane that provides the most gap between the plane and the closest vectors to 
the plane (Boser et al., 1992). However, a classifying neural network is fitted by 
using multiple steps of non-linear transformation. In this sense, the support vector 
and neural network see the data in different ways, and naturally, their difference in 
model structure would produce an independent prediction. Therefore, it is reasonable 
to assume that including more models in the voter set will be beneficial. 

There are myriads of researches regarding predicting economic variables such as 
daily stock market direction. In the recent rise of the interest in the field of machine 
learning techniques, most of the researches focus on improving the benchmark scores 
using different kind of preprocessed or unprocessed data. A study done by Zhong and 
Enke (2019) used a hybrid machine-learning algorithm to predict the daily return 
direction of S&P 500 ETF using 60 economically related features. They tested 
variously configured deep neural networks (DNNs) model and artificial neural 
networks (ANNs) model using differently preprocessed dataset. The study showed that 
the DNN configuration that curbed the over-fitting problem by using two principal 
component analysis (PCA) produced the best prediction result. Furthermore, it showed 
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that the trading strategies with the DNN classification scheme performed the best 
among the benchmark models. 

Ng (2014) focused on boosting algorithm, which is a combination of models, rather 
than using single classification models to predict the target economic variable. The 
study aimed to sort out the relevant variable that could be potential predictors in 
forecasting the economic recessions in three, six, and twelve months ahead. It used 
over 132 financial time series variables with their lag to create over 1500 variables. 
Boosting algorithm identified Aaa spread, risky bond and 5 year spread as important 
predictors in forecasting recessions. Also Bai and Ng (2009) used L2 boosting 
methodology to select predictors in factor-augmented autoregressions. The noticeable 
features of this research is that it implemented a stopping rule for boosting to prevent 
the model from being over-fitted. The study showed that one of the boosting methods 
outperformed conventional factor-augmented forecasting models, and autoregressive 
forecast. 

The direct implementation of diversity tackling algorithm into boosting can be 
found in Li et al. (2008), which suggested boosting support vector machine with 
consideration of diversity inside the ensemble model. It suggested that as the 
classifier’s performance gets higher, the ensemble model’s diversity decreases since 
the individual classifiers will produce equally good results. Therefore the paper 
suggests artificially reducing the accuracy of the component classifiers by tempering 
them with the tuning parameters of the support vector machine. Also, it proposed an 
additional algorithm that calculates diversity during the AdaBoost algorithm. If the 
training error is too large, or the diversity becomes too small, the suggested algorithm 
adjusts the tuning parameters, keeping the diversity of the component classifiers in 
consideration.  

Hsu (2017) proposed that the ensemble model should use multiple types of 
component classifiers with a heterogenous AdaBoost algorithm. To reduce the 
calculation overload, and add diversity to the design of the algorithm itself, he 
suggested an AdaBoost that chooses a single component classifier for an iteration by 
introducing a classifier choosing weight. The AdaBoost algorithm is part of the family 
of boosting algorithms that use sequentially growing decision trees as weak learners 
and punishing incorrectly predicted samples by assigning a larger weight to them after 
each round of prediction. This way, the algorithm is learning from previous mistakes, 
and enables us to make a final prediction by weighted majority vote. However, the 
algorithm itself usually is computationally very demanding and requires massive 
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computing time as well. Moreover, for noisy data the performance of AdaBoost is 
controversial in the sense that it often leads to poor performance due to the algorithm 
spending too much time on learning process and may generate skewed results. 

We believe that diversity is the most important factor that affects the overall 
predicting performance of the boosting algorithm. Thus, we propose a novel algorithm 
of AdaBoost where the heterogeneity of voting components of AdaBoost and adjusting 
the phase by phase sample weight change would provide more diversity into the 
algorithm. Following the idea of the stochastic gradient descent method that is 
commonly used in the field of stochastic programming, we propose a faster convergence 
algorithm that can be used in the procedure.  

The step-size is a critical in optimization procedure of stochastic gradient descent in 
learning process. As is well known, too large step-size may lead non-convergence, 
whereas too small step size leads to slow convergence and bad local minima. As long 
as the iterations do not diverge, a large constant step-size promotes fast convergence. 
To increase the accuracy, the step-size has to be decreased. Instead of fixed step size, 
the decaying step-size was shown to accelerate the convergence of SGD and to yield 
significant improvements compared to other type of boosting procedures as shown in 
Huang et al. (2017) among many others. 

We apply this idea in boosting algorithm in this paper. Instead of fixed sample 
weights and boosting iterations, we propose the exponential decaying algorithm in the 
adaboosting process. This leads to the faster convergence by taking big steps that can 
eliminate some models among the pool of classifiers with poor performance boosts by 
substantially decreasing the probability of being chosen. Hence, it can allow us to get 
faster convergence and better performances of our stochastic programming problem. 

This paper is structured as follows. Chapter II will discuss the nature of the data. 
Finally, Chapter III and Chapter IV will cover the model used in the paper, methods to 
improve the original AdaBoost by inducing diversity among the voters artificially, and 
its fitting and prediction result. 

 
II. Data 

  
1. Preprocessing Liquid Market Data 
 
To model the stock market return, we have collected various financial indicators 

across various fields from different sources. The collected data mostly focused on 
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liquid markets, such as stock indices and individual stocks. Among the collected time 
series data, those that satisfied two conditions were eventually used in the analysis 
process; data should be consistently available throughout the whole examination 
period, and the data should represent comprehensive information regarding the market’s 
movement. As a result, daily data from 2014-02-02 to 2020-04-30 across 192 different 
indices were collected.  

34 countries’ stock market indices were collected across the continent of America, 
Asia, and Europe using investing API. However, in concatenating the different 
country’s information, the time zone difference must be considered. When making an 
educated guess to predict market indices, one would like to use as much information 
as possible. Therefore, we refitted the model at 6:00 AM Korean Standard Time (KST, 
GMT+09) when we can use the data from the American and European Market.  

Moreover, the data set include additional 10 foreign exchange rates against the 
United States dollar, to accommodate changes in the currency market, 64 bonds yield 
from 24 countries to capture the movement of alternative assets, and 8 macroeconomic 
variables such as LIBOR (London Inter-bank Offered Rate) rate, gold price, and crude 
oil prices. 

Since each country has its national holidays and time zone difference, it is crucial to 
match the dates of each column of the data set. It is also important to fill in the blank 
spaces inside each column, where the stock market closes during national holidays. 
Therefore, we used the front-filling method, where the blank spaces are filled with the 
most recent data. For example, if country A’s stock market was closed on November 
1st due to a national holiday, the prediction would automatically use the most recent 
stock market index of country A, which was recorded on October 31st. This represents 
the rational behavior of using every piece of information in hand at the time of 
prediction. After filling in the blanks, a total of 192 columns remained, which are 
illustrated in Table 1. 

The data is transformed following the criteria suggested by FRED-MD (McCracken 
and Ng, 2016).   

• For the interest rates such as LIBOR, TED spread and effective federal funds rate 
(FFR), we used first difference of original values (Δ𝑥௧).  

• For trading volume, first difference were used.  
• In case of stock market indices and individual stocks from KOSPI50, log-difference 

were applied (Δlog𝑥௧).  
• Finally, for crude oil prices, we used second log-difference (Δଶlog(𝑥௧)).  
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The same process was applied two more times, but with a 7-day difference and 30-
day difference to take care of weekly, and monthly effects. After that, all the processed 
raw inputs were concatenated to form high-dimensional data set with 764 columns and 
2279 rows. 

For the target variable, we let  
 

 𝑦∗ = ൜1,      if  𝑦௧ାଵ − 𝑦௧ ≥ 0−1, otherwise,                       (1) 

 
where the target variables take only two values; 1 and -1. To construct the target 
variable, we took the first difference of the KOSPI200 index. If the calculated 
difference were negative, the target variable was set to -1, and if the difference were 
positive, the target variable was set to 1. 

 
Table 1. Raw Input Variables  

Type   Content 

Stock   U.S, Canada, Argentina, Brazil, Mexico, Peru, Chile, Australia, Germany 
 France, Spain, Netherlands, Belgium, Denmark, U.K., Sweden, Norway,  
 Ireland, Poland, Greece Hungary, India, Taiwan 

Exchange Rate 
(to USD)  

 CNY, DKK, HKD, INR, JPY, KRW, MYR, NOK, SIN, SEK, CHF, TWD,  
 EUR, GBP, CAD, AUD, NZD  

Bonds Yield   U.S.(1Y, 10Y), Mexico(1Y, 10Y), Germany(1Y, 10Y), U.K(1Y, 10Y),  
 France(1Y, 10Y), India(1Y, 10Y), S.Korea(1Y, 10Y), Spain(1Y, 10Y),  
 Indonesia(1Y, 10Y), Netherlands(10Y), Switzerland(1Y, 10Y), Taiwan(10Y),  
 Poland(1Y, 10Y), Belgium(1Y, 10Y), Thailand(1Y, 10Y), Norway(1Y, 10Y),  
 Hong Kong(10Y), Philippines(1Y, 10Y), Malaysia(1Y, 10Y), Ireland(1Y, 10Y), 
 Greece(10Y), Czech(1Y, 10Y), Hungary(1Y, 10Y) 

Macro Var.   LIBOR, VIX, Gold, TED spread, Oil WTI, Oil Brent, Effective FFR,  
 High return Bond, KOSPI200 trade volume 

KOSPI50  
(volume and 
price) 
(2020 standard) 

 105560, 030200, 033780, 003550, 066570, 034220, 051900, 032640, 086790,  
 051910, 010950, 017670, 326030, 034730, 096770, 000660, 035250, 010130,  
 000270, 024110, 035420, 251270, 023530, 011170, 006400, 028260, 207940,  
 032830, 018260, 009150, 005930, 000810, 068270, 055550, 002790, 090430,  
 036570, 316140, 139480, 021240, 005490, 015760, 009540, 161390, 000720,  
 086280, 012330, 004020, 005380 (035720 was excluded) 
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2. Variable Selection 
 
Using as much data as possible might help to find the optimization point and attain 

maximum training accuracy, it does not necessarily guarantee low generalization error. 
On the contrary, the model might be over-fitted and leads to poor out-of-sample 
prediction (Guyon et al., 2006). Therefore, we used permutation variable importance 
with random forest to choose features that have the most explanatory power.  

Random forest uses differently constructed decision trees as weak classifiers to 
create a combined ensemble decision. Trees are trained with a different bootstrap 
sample of the original training set. Bootstrap samples are obtained by drawing the same 
number of data points with replacement. Therefore, when there are 𝑛 number of total 
data points, the probability of not picking a particular data point can be denoted as ௡ିଵ௡ . 

For the whole data set, the probability of not picking 𝑛 rows is (௡ିଵ௡ )௡, and with 
large enough 𝑛, this number will converge to 𝑒ିଵ, which suggest that every one out 
of three observations is not included in growing a single tree inside the random forest. 
These observations that are not included during the training are called out of bag (OOB)  

 
Table 2. Permutation Importance Selected Variables 

Type  Content 
Stock  India 1diff, Australia 1diff, Thailand 1diff 
Exchange Rate  CNY 1diff, NZD 7diff 
Bonds Yield   U.S. 1Y 1diff, India 1Y1diff, Spain 10Y 1diff, Indonesia 1Y 1diff,  

 Greece 10Y 1diff, Czech Republic 10Y 1diff, Hungary 10Y 1diff,  
 Poland 1Y 30diff 

Macro Var.   LIBOR 1day diff, VIX 1day diff, VIX 7days diff, Oil WTI 1day diff,  
KOSPI50   105560 vol, 096770 vol, 006400 vol, 139480 vol, 105560 vol 1diff,  

 030200 vol 1diff, 003550 vol 1diff, 034220 price 1diff, 034220 vol 1diff,  
 051910 vol 1diff, 017670 vol 1diff, 034730 vol 1diff, 096770 vol 1diff, 
 000660 vol 1diff, 035250 vol 1diff, 000270 vol 1diff, 006400 vol 1diff,  
 055550 vol 1diff, 036570 vol 1diff, 005490 vol 1diff, 015760 price 1diff,  
 015760 vol 1diff, 009540 price 1diff, 000720 vol 1diff, 086280 vol 1diff, 
 004020 vol 1diff, 030200 vol 7diff, 096770 vol 7diff, 006400 vol 7diff,  
 015760 vol 7diff, 030200 vol 30diff, 066570 vol 30diff, 034220 vol 30diff,  
 051900 vol 30diff, 051910 vol 30diff, 010950 vol 30diff, 017670 vol 30diff,  
 096770 vol 30diff, 000660 vol 30diff, 000270 vol 30diff, 024110 vol 30diff,  
 006400 vol 30diff, 009150 vol 30diff, 090430 vol 30diff, 086790 vol 30diff,  
 015760 vol 30diff, 004020 vol 30diff, 005380 vol 30diff 

 vol : volume   𝑛diff : 𝑛 day difference 
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samples, which are used when calculating permutation variable importance.  
First, the classification of the random forest is performed. After training, the 

prediction is performed using OOB samples, where each tree’s prediction value is 
recorded. Then the values are randomly permuted across the column, and the training 
is repeated. If the column possesses any prediction power, the prediction value of the 
original data set would exceed the data set that used the permuted one. The importance 
of the feature can be defined as a difference between the number of correct votes cast 
in the original and permuted system divided by a number of data points. 

After the variable selection, 66 variables were selected among 764 original variables. 
Selected variables are tabulated in Table 2. 

 
III. Model and Estimation 

  
1. Model 
 
Boosting aggregate the outputs of various weak classifiers to produce a powerful 

committee. Weak classifiers’ performance on any training set is slightly better. 
However, unlike bagging, where multiple weak classifiers are trained at the same time, 
boosting trains its classifiers in an iterative fashion. At each iteration, the training set 
used by the classifier is altered, as the algorithm tries to exaggerates the effect of 
unsuccessfully predicted observations.  

 
(1) AdaBoost 

One of the most popular boosting algorithms is an adaptive boosting algorithm or 
AdaBoost for short (Freund and Schapire, 1997). AdaBoost uses sample weights and 
updates them every iteration. The weak classifier’s performance is evaluated by the 
sum of that sample weights, where the word ‘adaptive’ comes from. The voting 
classifiers from each iterative step are aggregated via a weighted majority voting system. 

Table 3 shows the AdaBoost algorithm in detail. To elaborate on each part, suppose 
the AdaBoost model is iterated up to 𝑀  steps. Since the committee result of the 
ensemble is decided by majority voting, the prediction result of some 𝑚 − 1 where 2 < 𝑚 < 𝑀 is decided as following linear combination of classifiers.  
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𝐺ଵ,௠ିଵ(𝑥௜) = 𝛼ଵ𝐺ଵ(𝑥௜) + 𝛼ଶ𝐺ଶ(𝑥௜) + 𝛼ଷ𝐺ଷ(𝑥௜) + ⋯+ 𝛼௠ିଵ𝐺௠ିଵ(𝑥௜) 
 𝑥௜ = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡.  𝐺௜ = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑖. 𝐺ଵ,௜ = 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 1  𝛼௜ = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑚𝑜𝑑𝑒𝑙 𝑖                     (2) 

  
Table 3. AdaBoost Algorithm  

Algorithm  

1. Initialize sample weight 𝑤௜ as ଵே. 
2. For 𝑚 = 1 to 𝑀 
  1) Fit all the classifier in a given voting classifier using training data.  
  2) Compute training error 𝑒𝑟𝑟௠ of those classifiers. Choose the classifier that results in  
     smallest training error. Denote the chosen classifier as 𝐺௠(𝑥௜). 
  3) Compute weight of the classifier 𝐺௠(𝑥௜) as 𝛼௠ = log((ଵି௘௥௥೘)௘௥௥೘ ) 

  4) Set new sample weight 𝑤௜(௠) = exp(−𝑦௜𝐺ଵ,௠ିଵ(𝑥௜)) and normalize it so that 
 ∑ே௜ୀଵ 𝑤௜ = 1 

3. Output 𝐺ଵ,௠(𝑥௜) = 𝑠𝑖𝑔𝑛∑ெ௠ୀଵ 𝛼௠𝐺௠(𝑥௜) 

   
The error of individual observation takes the form of  
 

 𝐿(𝑦,𝑦ො) = exp(−𝑦 × 𝑦ො), 𝑦 ∈ {−1,1}                 (3) 
 

where 𝑦 is the real target value and 𝑦ො is classified value resulting from individual 
classifier 𝐺௧(𝑥). The error is designed in a way that if the classifier predicted correctly, 𝑦 × 𝑦ො  becomes 1, and computes a relatively low error of 𝑒ିଵ . However, if the 
classifier predicted incorrectly, it computes a high error of 𝑒. With this individual error 
one can define the total error as  

 𝐸ଵ,௠ିଵ = ∑ே௜ୀଵ 𝐿(𝑦,𝑦ො)                        (4) 
                                                             = ∑ே௜ୀଵ exp(−𝑦 × 𝐺ଵ,௠ିଵ(𝑥௜))          (5) 
 

where 𝐸ଵ,௠ିଵ denotes total error from iteration 1 to 𝑚 − 1. 
In the next iteration, 𝛼௠𝐺௠(𝑥௜) will be added to the equation where 𝛼௠  and 𝐺௠(𝑥௜) stands for the weight of the classifier and the classifier itself, respectively. 
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Since the error is a function of 𝑦ො = 𝐺ଵ,௠(𝑥), it can be minimized with respect to 𝛼௠, 
which is the individual classifiers’ weight for each iteration, and 𝐺௧(𝑥), which is the 
individual classifier itself. If there is a pool of multiple classifiers to choose from, 𝐺௧(𝑥) should be determined by drafting the best classifier from the pool.  

 

 𝐸ଵ,௠ = ∑ே௜ୀଵ exp ൬−𝑦 × ቀ𝐺ଵ,௠ିଵ(𝑥௜) + 𝛼௠𝐺௠(𝑥௜)ቁ൰ 

 = ∑ே௜ୀଵ exp(−𝑦 × (𝐺ଵ,௠ିଵ(𝑥௜) + 𝛼௠𝐺௠(𝑥௜))) 

 = ∑ே௜ୀଵ 𝑤௜(௠)exp(−𝑦 × 𝛼௠𝐺௠(𝑥௜)) (6) 
 
At the point of adding 𝑚th classifier, the result up to 𝑚 − 1 iterations are already 

determined. Therefore, 𝐺ଵ,௠ିଵ(𝑥௜) can be considered as a constant, or as a weight 
for upcoming 𝑚th classifier.  

To obtain the appropriate 𝑚th classifier, 𝐺௠(𝑥) should minimize the error 𝐸ଵ,௠. 
Assume 𝛼௠ is constant then we get  

 𝐸ଵ,௠ = ∑ே௜ୀଵ 𝑤௜(௠)exp(−𝑦 × 𝛼௠𝐺௠(𝑥௜))                        (7) 
 = exp(−𝛼௠)∑௬೔ୀீ೘(௫೔) 𝑤௜(௠) + exp(𝛼௠)∑௬೔ஷீ೘(௫೔) 𝑤௜(௠)   (8) 
 

where the first element on the right hand side is the sum of all correctly classified 
observations and the latter element is the sum of all incorrectly classified observations. 
Since 𝛼௠ is fixed hence minimizing 𝐸 is as same as minimizing exp(𝛼௠)𝐸, and 
the sum of weight 𝑤௜(௠) is normalized into 1, the objective function becomes  
 exp(𝛼௠)𝐸ଵ,௠ = ∑௬೔ୀீ೘(௫೔) 𝑤௜(௠) + exp(2𝛼௠)∑௬೔ஷீ೘(௫೔) 𝑤௜(௠)     (9) 

 = 1 + ∑௬೔ஷீ೘(௫೔) 𝑤௜(௠)(exp(2𝛼௠) − 1)             (10) 
 

where (exp(2𝛼௠) − 1) is constant according to the assumption. Therefore, at the 𝑚th iteration, AdaBoost chooses a classifier that has the lowest error, which is defined 
by the sum of all incorrectly labeled data points’ weight. 
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As for the weight of the classifier 𝛼௠, it is determined by minimizing the error 𝐸ଵ,௠ given that the classifier is already determined.  
 డாడఈ೘ = −exp(−𝛼௠)∑௬೔ୀீ೘(௫೔) 𝑤௜(௠) + exp(𝛼௠)∑௬೔ஷீ೘(௫೔) 𝑤௜(௠)   (11) 

  𝛼௠ = ଵଶ × log ∑೤೔సಸ೘(ೣ೔)௪೔(೘)∑೤೔ಯಸ೘(ೣ೔)௪೔(೘)                     (12) 

 = ଵଶ × log (ଵି௘௥௥೘)௘௥௥೘                           (13) 

 
Since the voting classifier is weak, they are assumed to have a minimum accuracy 

of 0.5. If the 𝑒𝑟𝑟௠ is lower than 0.5, the algorithm stops. If the 𝑒𝑟𝑟௠ is low, 𝛼௠ is 
designed to become larger, thereby giving 𝑚th classifier more weight. 

 
(2) XGBoost 

XGBoost stands for Extreme Gradient Boosting (Chen and Guestrin, 2016). As the 
name suggests, it uses gradient boosting methods, and it utilizes both hardware and 
algorithm optimizations to maximize calculation efficiency. In algorithm optimization, 
XGBoost tries to improve base classifiers, which are decision trees, by employing 
parallel calculation, tree-pruning, and regularization. It also utilizes missing value 
handling techniques. By doing so, it offers many fast and efficient ways to handle large 
dimensional data. 

XGBoost’s essence lies in its core voting classifiers: gradient boosted decision trees. 
Gradient boost takes a different approach compared to the AdaBoost algorithm. While 
in AdaBoost the errors of the models are identified by observations with relatively 
higher weight, in gradient boosting, they are identified by gradients. By calculating the 
gradients, at each iteration, the objective of the gradient boosting algorithm is to find a 
classifier that gives the largest improvement to the loss function 𝐿. 

Assume that there is a loss function 𝐿(𝑦, 𝑓(𝑥)) where 𝑓(𝑥) = 𝑦ො. At each iteration 
the loss can be calculated and naturally, the algorithm would minimize the losses after 
each iteration by adding new classifier ℎ௠(𝑥).  

 ℎ௠(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛௛೘ ∑௡௜ୀଵ 𝐿(𝑦௜ ,𝐹௠ିଵ(𝑥) + 𝛾ℎ௠(𝑥))         (14) 
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𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) + 𝑎𝑟𝑔𝑚𝑖𝑛௛೘ ∑௡௜ୀଵ 𝐿(𝑦௜ ,𝐹௠ିଵ(𝑥) + 𝛾ℎ௠(𝑥))   (15) 
 

where 𝐹௠ିଵ(𝑥) is the fitted model until iteration 𝑚 − 1.  
Therefore, choosing ℎ௠(𝑥)  is directly related to how much loss can ℎ௠(𝑥) 

reduce. Here, the gradient boosting algorithm implements the idea of gradient descent. 
Gradient descent is an algorithm that is used numerically optimize any functions 
iteratively. By not using any second-order derivative of the function, it offers much 
faster calculation. With each iterating steps, gradient descent calculates the gradient 
from a particular point and takes steps in the opposite sign of the gradient. The idea is 
to take the steepest descent road down the hill of the function.  

Just like gradient boosting, the gradient boost will also take the approach of taking 
the steepest descent. After determining the steepest gradient at each iteration, ℎ௠ is 
inserted into the loss function, so that the weight 𝛾௠ can be determined via simple 
optimization calculation.  

 𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) − 𝛾௠ ∑௡௜ୀଵ ∇ி೘షభ𝐿(𝑦௜ ,𝐹௠ିଵ(𝑥௜))         (16) 
 𝛾௠ = 𝑎𝑟𝑔𝑚𝑖𝑛ఊ ∑௡௜ୀଵ 𝐿(𝑦௜ ,𝐹௠ିଵ(𝑥௜) + 𝛾ℎ௠(𝑥௜))         (17) 

 
In most cases, the gradient of the loss function with negative sign −∇ி೘షభ𝐿(𝑦௜ ,𝐹௠ିଵ(𝑥௜)) is similar to the concept of residual.  
 𝐹௠ାଵ(𝑥) = 𝐹௠(𝑥) + ℎ௠(𝑥) = 𝑦                  (18) 
 ℎ௠(𝑥) = 𝑦 − 𝐹௠(𝑥)                        (19) 
 
Since it is much faster to calculate residuals than the actual gradient in some 

functions, at each step, the gradient descent fits model ℎ௠(𝑥) using 𝑥 and residual 𝑦 − 𝐹௠(𝑥) to choose the best model ℎ௠ at each iteration steps. 
After the iteration phase is finished, the final boosting decision is made by updating 

the model at iteration in an additive manner just like AdaBoost. Table 4 illustrates the 
iterative process of the gradient boost algorithm.  

 𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) + 𝛾௠ℎ௠(𝑥)                 (20) 
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Table 4. Gradient Boost 

Algorithm  

1. Initialize model with a constant value. 𝐹଴(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛ఊ ∑௡௜ୀଵ 𝐿(𝑦௜ , 𝛾) 
2. For 𝑚 = 1 to 𝑀 
  1) Compute pseudo-residuals 𝑟௜௠ = −డ௅(௬೔,ி(௫೔))డி(௫೔) .  

  2) Fit a weak learner ℎ௠(𝑥) to residual.  
     In other words train it using training set (𝑥௜ , 𝑟௜௠) 
  3) Compute 𝛾௠ by solving 𝑎𝑟𝑔𝑚𝑖𝑛ఊ ∑௡௜ୀଵ 𝐿(𝑦௜ ,𝐹௠ିଵ(𝑥௜) + 𝛾ℎ௠(𝑥௜)) 
  4) Update the model 𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) + 𝛾௠ℎ௠(𝑥) 
3. Output 𝐹௠(𝑥) 

   
XGBoost is based on the concept of gradient boost. While gradient boost can take 

any voters, XGBoost uses decision trees. XGBoost uses novel ways to shorten the 
model training time, and one way of doing it is to approximate the best split for each 
branch of the decision tree. For example, if the data has 50 features and each feature 
has 10 different values, one must evaluate 500 different split points. If there are more 
features or more values, the number of potential splitting points increases. Therefore, 
to reduce the split evaluating time, XGBoost creates an approximate algorithm. 
Essentially, it breaks down all the potential candidates for splitting points and maps it 
into a bucket. For example, 500 different split points can be mapped into 50 buckets, 
where each bucket contains 10 splitting points. Then the greedy algorithm for finding 
the best split is executed. By dividing it into buckets, the total number of split points 
to evaluate is decreased, and it can also be calculated in parallel, thereby greatly 
reducing the calculation time.  

Furthermore, XGBoost can efficiently handle missing values in the data, by 
employing a sparsity-aware split finding method. XGBoost tackles the missing value 
problem by setting up an initial default direction for empty values, and when the 
algorithm encounters missing data during the inference phase, it automatically fills the 
missing data with the default direction. The default direction is chosen by comparing 
the results between two different data configurations: 1) when missing values are sent 
to the right side of the split and 2) when missing values are sent to the left side of the 
split. 

 
 
 



416 Sangil Bae and Minsoo Jeong 

ⓒ Korea Institute for International Economic Policy 

(3) Stochastic AdaBoost with decaying convergence rate 

Since an ensemble algorithm can provide an improved result, diversity is an 
important factor. The errors made by individual classifiers from the voting pool should 
be uncorrelated. If individual classifier’s prediction result disagrees with each other, 
uncorrelated errors will be removed by the voting process (Li et al., 2008). To impose 
diversity on ensemble algorithm one can use different data for each class like bagging, 
which uses bootstrapped samples to fit each voting classifiers. Also, one can use 
different models as a voting classifier, and since each model has a different method of 
analyzing the data, such heterogeneity can naturally impose uncorrelated errors among 
individual models. 

Boosting is an iterative process, hence the fitting of several models in the voting 
pool does not happen in parallel. Instead, in each iteration, AdaBoost fits all of the 
models in the voting pool and then selects the best model among the voting pool. This 
means if there are 𝑚  iterations, 𝑙  number of models, and if fitting takes 𝑂(1) 
amount of time, the whole AdaBoost would take 𝑂(𝑚𝑙) processing time when run 
in a single thread. In conclusion, as the number of voting classifier increases, the 
training time would increase massively. 

 
Figure 1. Training Errors by Iteration 
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Figure 2. Covariance between Errors (max) 

 
 
Further, as the iterative phase of boosting continues, the covariance between errors 

produced from the voter increases. AdaBoost algorithm exaggerates weights to the 
particular observations which the individual classifier failed to label correctly. This is 
to give more emphasis on the hard-to-train observation during the next iteration, urging 
the classifiers to train better on those examples as the boosting continues. However, as 
Figure 1 suggests, the training error rapidly converges to 0 during the first 30 iterations. 
Also, Figure 2 shows that the covariance between errors rapidly increases within the 
first 50 iterations. This discourages the attempts to train the boosting algorithm with 
many iterating boosting steps. 

To tackle this problem, the stochastic AdaBoost algorithm was proposed (Hsu, 
2017). Assume there are 𝑁 observations, 𝐿 number of classifiers in the pool, and 
boosting continues for 𝑀  iterations. The algorithm is designed to train only one 
classifier from the voting pool at each iteration. At each iteration, the particular 
algorithm is randomly chosen according to a selection probability distribution. The 
initial classifier selection probability distribution is a uniform distribution. As the 
iteration progresses, it gives more chance of selection to the classifier that has less error. 
Hence, algorithm for classifier selection weight is 𝑤𝑐௝ାଵ: = 𝑤𝑐௝exp(𝜈𝛼௠). Since 𝛼௠ can be interpreted as an indicator for the predictive power of the classifier, if 𝛼௠ 
is high, it receives a higher chance of being selected among the voting classifier. 
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Table 5. AdaBoost with Stochastic Algorithm Algorithm  

Algorithm  

1. Initialize sample weight 𝑤௜ as ଵே. 

2. Initialize classifier weight as 𝑤𝑐௝ as ଵ௅ 
3. For 𝑚 = 1 to 𝑀 
  1) Fit single random classifier 𝐺௠(𝑥௜) from the pool using training data.  
  2) Compute 𝐺௠(𝑥௜) training error 𝑒𝑟𝑟௠. 
  3) Compute weight of the classifier 𝐺௠(𝑥௜) as 𝛼௠ = log((ଵି௘௥௥೘)௘௥௥೘ ) 

  4) Set new sample weight 𝑤௜(௠) = exp(𝜇 − 𝑦௜𝐺ଵ,௠ିଵ(𝑥௜)) and normalize it so that 
 ∑ே௜ୀଵ 𝑤௜ = 1 

  5) Using the weight of the classifier, update the probability distribution that is used for  
    selection of next voting classifier 𝑤𝑐௝: = 𝑤𝑐௝exp(𝜈𝛼௠) 
4. Output 𝐺ଵ,௠(𝑥௜) = 𝑠𝑖𝑔𝑛∑ெ௠ୀଵ 𝛼௠𝐺௠(𝑥௜) 

   
Both 𝜇 and 𝜈 serve different roles in this algorithm. Having 𝜇 and 𝜈 decreases 

the speed of adapting sample weights, allowing more boosting iterations without loss 
of diversity. Without 𝜇  and 𝜈 , the probability distribution that is used for the 
selection of the next voting classifier would point to one after a couple of iterations. In 
this paper, instead of using constant 𝜇 and 𝜈 as in Hsu (2017), we allowed 𝜇 and 𝜈 to decay over time, such that  

 
 𝜇௧ = 𝜇଴exp(−𝑘𝑡)                        (21) 

 
 𝜈௧ = 𝜈଴exp(−𝑘𝑡)                        (22) 

 
Another well known algorithm that implements decaying step size is momentum 

based stochastic gradient boosting (SGD) variant, which is used for fitting neural 
networks. By implementing it, it allows neural network to avoid local optimization 
point, prevent oscillation in fitting process and shorten model training time. Likewise, 
by using the exponential decaying algorithm, it allows the convergence to occur at the 
beginning by taking big steps. This relatively large convergence rate will eliminate 
some models among the pool of classifiers that gives poor performance boost by 
substantially decreasing the probability of being chosen. It will also give high weights 
to hard-to-identify observation points at the beginning of the iteration. As the iteration 
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proceeds, the constant will be decreased for fine-tuning. Moreover, if the boosting 
iteration gets larger, the whole converging procedure corresponds to the original 
AdaBoost procedure, which calculates the best model in each iteration. Stochastic 
algorithm can imitate the process of AdaBoost when the boosting iteration gets larger, 
because at high iteration, the probability distribution is converged to the models that 
gives smallest error. k in (21) and (22) are exogenous constant. One can set any positive 
value for k but after series of grid search, the research settled on 1.1 for both ks. 

 
2. Estimation 
  
(1) Predicting and evaluation on an imbalanced data 

The main experiments were conducted with the data set mentioned in Section III. 
We set up a training set of 1095 days and refitted the model using a rolling window 
estimation scheme after making predictions for 30 days. The total testing period ranged 
from February 1, 2017 to April 29, 2020, therefore there were 40 refitting incidents. 

 
Figure 3. Error Comparison by Configuration 

 

 
The test set has 817 1s and 367 -1s. Since we have labeled 𝑖𝑛𝑑𝑒𝑥௧ − 𝑖𝑛𝑑𝑒𝑥௧ିଵ ≥ 0 

as 1, there are significantly much more 1s making it an imbalanced dataset. In this case, 
if one measures accuracy by counting correctly classified observation and dividing it 
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by the total number of observations, it may lead to a biased result. For example, if a 
certain classifier predicted all the classes as 1, it will be reporting an accuracy of 0.69. 
To find the classifier that best suits our purpose (the one that decently predicts both 1s 
and -1s), we have implemented weighted accuracy. Weighted accuracy takes an 
average of the total rate of correctly labeled positive (1) values and correctly labeled 
negative (-1) values. In other words, we calculate the average true positive rate (TPR) 
and true negative rate (TNR):  

 
 𝑎𝑐𝑐௪௘௜௚௛௧௘ௗ = ଵଶ (𝑇𝑃𝑅 + 𝑇𝑁𝑅)                   (23) 

 
In this sense, if a certain classifier predicted all the labels of imbalanced test data as 

1, it will only be marked as a classifier with 50% of accuracy, since they failed at 
attempts to predict -1 values. 

 
(2) Diversity result 

The impact of the stochastic algorithm and decaying convergence rate on the 
enhancement of voting classifier sets’ diversity was measured. Only one classifying 
model was inserted into three boosting configurations, namely conventional, stochastic, 
and stochastic decay so that the heterogeneity of the voting classifier’s impact on 
diversity can be ruled out. Namely, a single neural network was used as a voting 
classifier. Then all three configurations were fitted with the same training data (2014-
02-02 to 2017-01-31). The boosting iteration was stretched to 300. After fitting the 
model, the in-sample prediction result of each boosting iteration was observed and the 
maximum covariance value was recorded. Furthermore, the out-of-sample prediction 
result after 30 boosting iterations was logged, and both the accuracy and the weighted 
accuracy were calculated. 

Figure 3 shows that both boosting with stochastic decay and stochastic configuration 
reduces covariance, and thereby increases diversity and performance during the first 
50 iterations. Also, as the iteration progresses, the boosting configured with decaying 
convergence rate kept its covariance at 0.5, while conventional and stochastic 
AdaBoost with no decaying convergence rate peaked at over 0.6. 
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Table 6. Classifier Accuracy by Configuration  
(unit: %)  

Config.   Conventional   Stochastic   Stochastic decay 

Accuracy   73.33   73.33   76.67 

Accuracy 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅   61.90   65.08   67.46 

   
To compare the performances, all three boosting configurations were tested on a 

same time-series data. The test dataset has 21 positive values (1) and 9 negative values 
(-1). Table 6 shows that stochastic decay configuration showed better performance, 
while conventional and stochastic configuration without decaying convergence rate 
had relatively lower accuracy. The conventional configuration and stochastic 
configuration had the same accuracy but different weighted accuracy. Since higher 
weighted accuracy illustrates that model shows high performance on classifying both 
1s and 0s, this result suggests that although both configurations managed to correctly 
label the same number of observation values from the test data (22 data points out of 
30), the stochastic configuration succeed to predict more diverse labels. 

 
(3) Data application result 

Table 7 illustrates the results of each classifier. DT1 and DT2 are decision trees 
differing in their maximum depth. DT1 has a maximum depth of 5 and DT2 has a 
maximum depth of 10. RF1 to RF5 are random forest classifiers. Each random forest 
models have a different configuration combination of maximum depth and number of 
trees. RF1, RF2, RF3, RF4, and RF5 has max depth of 2, 4, 6, 8, and 10 respectively. 
They all have 1,000 decision trees in its models. NN1 to NN3 is neural network 
classifiers. They are configured to have different layers; NN1, NN2, and NN3 models 
have 1, 2, and 3 hidden layers respectfully If SVC stands for support vector 
classification model. It’s box constraint hyper parameters and kernel scale (gamma) 
are each fixated to 1 and 1. Ada, SAda and SAda  ௗ௘௖௔௬  denotes conventional 
AdaBoost, AdaBoost with a stochastic algorithm, and AdaBoost with stochastic 
algorithm and decaying convergence rate, respectively. Ada30 has 30 iteration 
process, Ada40 has 40, and Ada50 has 50 respectively. Ada, SAda, and SAda ௗ௘௖௔௬ 
included all of the individual classifiers in their voting set. For the exception of support 
vector classifier, all of the models listed has a random outcome. To find out the best 
model that has robust performance, for each model the prediction process was repeated 
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40 times. Table 7 records the maximum performance (Max), minimum performance 
(Min) and mean performance (Mean) for each models. For example, DT1 model fitting 
process was repeated 40 times and the Maximum out of sample performance was 
53.58%.  

 
Table 7. Benchmark Result  

(unit: %) 
Classifier   DT1   DT2   RF1   RF2   RF3   RF4  

Mean   53.02   53.37   50.00   51.90   53.45   51.53  
Max   53.58   54.40   50.00   52.13   54.19   51.84  
Min   52.46   52.23   50.00   51.66   52.90   51.22  

Classifier   RF5   NN1   NN2   NN3   SVC   Ada  
Mean   52.91   54.74   54.98   54.14   52.31   52.45  
Max   54.08   55.99   56.49   55.75   N/A   53.46  
Min   52.10   53.57   53.84   53.00   N/A   51.12  

Classifier SAda30 SAda30 ௗ௘௖௔௬ SAda40 Sada40 ௗ௘௖௔௬ SAda50 SAda50 ௗ௘௖௔௬ 
Mean   54.35   54.82   54.55   54.92   54.95   56.11  
Max   54.67   56.15   54.91   56.15   56.33   56.81  
Min   54.18   53.86   54.18   53.86   54.18   55.08  

 
The evaluation of the conventional AdaBoost was done differently. Since the test 

tried to evaluate the efficiency of including the stochastic algorithm, the fitting of 
conventional AdaBoost was stopped if the fitting time exceeded that of AdaBoost 
with some kind of stochastic algorithm. All of the conventional AdaBoost failed to 
reach the intended 30 iterations or more due to this time limitation which resulted in 
one of the worst performance among the benchmark classifiers. 

It is shown in Table 7 that Adaboost with some kind of stochastic measures 
performed well during the benchmark, recording more than 54 percent of accuracy. 
And due to the result illustrated in Figure 3, its relatively low diversity allowed them 
to increase their performance as the boosting iteration gets larger. The inclusion of a 
decaying convergence rate instead of constant convergence seemed to bring 
performance enhancement, showing more than one percent point increase when the 
boosting iteration reaches 50.  

 
Table 8. Classifier Accuracy 

(unit: %)  
Classifier  SAda50 𝒅𝒆𝒄𝒂𝒚  XGBoost 

Mean  56.11  55.20  
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When compared with XGBoost, the stochastic AdaBoost outperformed the standard 
configured XGBoost model, which achieved an average of 55.20 percent weighted 
accuracy in the benchmark testing. XGBoost algorithm used gradient boosted trees as 
its voting classifier, and its performance was recorded. However, it managed to do the 
same task of fitting and predicting in a much shorter time. We conjecture this is 
because of the hardware-optimization of XGBoost, and also because it uses only 
decision trees as a voting component, which played a huge role in reducing the 
computing time of the algorithm. 

 
IV. Conclusion 

 
This paper pursues to find out how boosting performs in predicting very volatile 

financial time-series data such as stock indices, and how we can improve boosting 
techniques in prediction. Boosting concept is based on an ensemble scheme, where 
each model is added upon the previous fitting result. Since different models are 
combined to make a unified decision, the performance of the boosting algorithm relies 
heavily on the diversity of the result produced by individual base models. Two main 
methods of inducing diversity was proposed in this paper: one is to use heterogeneous 
models, and the other is to implement variable that slows convergence rate during 
stochastic model selection. 

Stochastic AdaBoost with decaying convergence rate is proposed in this paper. 
Experimental results on training and testing benchmark data showed that the 
suggested algorithm can induce diversity as the boosting iterations intensify, and it 
generally performs better than the constant convergence rate algorithm. And when 
heterogeneous voting sets are used, the suggested algorithm substantially reduces the 
fitting time, while providing a similar or better performance compared with the 
conventional AdaBoost. 

However, there is some limitation regarding this study. Although the stochastic 
AdaBoost with decaying convergence rate tried to reduce calculating time, it did not 
implement any hardware optimization. Thus, XGBoost managed to train the model in 
much faster time than the proposed algorithm with a reasonable degree of prediction 
accuracy. We believe that multi-threaded computations will lead to better time 
performance in stochastic AdaBoost since the individual model fitting is generally not 
using the entire capacity of the CPU’s computing power. 
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