DOI QR코드

DOI QR Code

A Study on the Shapes of Twin Curvy Sail for Unmanned Sail Drone

무인세일드론의 트윈커브세일 형상에 관한 연구

  • Ryu, In-Ho (Graduate School of Mokpo National Maritime University) ;
  • Kim, Bu-Gi (Division of Mechatronics Engineering, Mokpo National Maritime University) ;
  • Yang, Changjo (Division of Marine Engineering System, Mokpo National Maritime University)
  • 류인호 (목포해양대학교 기관시스템공학과) ;
  • 김부기 (목포해양대학교 해양메카트로닉스학부) ;
  • 양창조 (목포해양대학교 기관시스템공학부)
  • Received : 2021.07.30
  • Accepted : 2021.12.28
  • Published : 2021.12.31

Abstract

In Korea, the importance of marine activities is great, and automatic weather observation facilities are operating on land to investigate abnormal weather phenomena caused by industrialization; however, the number of facilities at sea is insufficient. Marine survey ships are operated to establish marine safety information, but there are many places where marine survey ships are difficult to access and operating costs are high. Therefore, a small, unmanned vessel capable of marine surveys must be developed. The sail has a significant impact on the sailing performance, so much research has been conducted. In this study, the camber effect, which is a design variable of the twin curvy sail known to have higher aerodynamic performance than existing airfoil shapes, was investigated. Flow analysis results for five cases with different camber sizes show that the lift coefficient is highest when the camber size is 9%. Curvy twin sails had the highest lift coefficient at an angle of attack of 23° because of the interaction of the port and starboard sails. The port sail had the highest lift coef icient at an angle of attack of 20°, and the starboard sail had the lowest lift coef icient at an angle of attack of 15°. In addition, the curvy twin sail had a higher lift coefficient than NACA 0018 at all angles of attack.

우리나라는 해상활동의 중요성이 크며, 산업화에 따른 이상기후 현상 등을 규명하기 위해 육상에 많은 자동기상 관측설비를 운영 중이지만 해상에서는 그 수가 매우 부족하다. 또한, 해양안전정보 구축 등을 위해 해양조사선을 운영 중이나 접근이 어려운 곳이 많고 높은 운영비용이 요구된다. 따라서 다양한 해양관측 등이 가능한 소형무인화선박의 개발이 필요하다. 한편 소형 무인화 선박에서 세일(Sail)은 항해 성능에 큰 영향을 미치므로 이에 대한 많은 연구가 진행되고 있다. 본 연구에서는 기존 에어포일 형상보다 높은 공기역학적 성능을 갖는 것으로 알려진 트윈커브세일(Twin curvy sail)의 설계변수인 캠버(Camber)효과에 대해 검토하였다. 5 종류의 캠버에 대해 유동해석 결과, 캠버 크기가 9 %일 때 가장 높은 양력계수를 나타내었다. 트윈커브세일의 경우 Port sail과 Starboard sail의 상호작용에 의해 받음각 23°에서 가장 높은 양력계수를 갖고, Port sail의 경우 받음각 20°에서 가장 높은 양력계수를 Starboard sail의 경우 받음각 15°에서 가장 낮은 양력계수를 나타내었다. 또한, 트윈커브세일은 모든 받음각에서 에어포일 형상인 NACA 0018보다 높은 양력계수를 나타내었다.

Keywords

Acknowledgement

이 논문은 2021년도 한국산업기술진흥협회(KOITA) 산학연 클러스터 지원사업의 재원으로 "한국해안에 적합한 Sail Drone 연구 개발"의 지원을 받아 수행된 연구임(KOITA-COLTER-2021-0059).

References

  1. Furukawa, H., A. W. Blakeley, R. G. J. Flay, and P. J. Richards(2015), Performance of wing sail with multi element by two-dimensional wind tunnel investigations, The Journal of Fluid Science and Technology Vol. 10, No. 2, pp. 1-14.
  2. Jeong, J. S.(2003), Sailing Yacht, pp. 1-204.
  3. Kim, J. S., T. U. Lee, T. H. Kang, I. K. Kim, and Y. S. Kim(2006), A CFD Analysis on Axial Inlet Cyclone using Realizable κ-ε Turbulence Model, Journal of the Korean Society of Mechanical Engineers, pp. 1576-1581.
  4. Kim, B. S., H. J. Eum, J. B. Won, and M. E. Kim(2008), Flow Simulation and Power Prediction of a HAWT Based upon a Change of Turbulence Models, Journal of the Korean Society of Mechanical Engineers, No. 5, pp. 27-32.
  5. Kim, S. Y., N. S. Sun, and S. H. Kim(2014), Development Localization of Multipurpose Intelligent Unmanned Ship, Journal of the Society of Naval Architects of Korea, Vol. 21, No. 2, pp. 9-12.
  6. Lee, H. J., Y. M. Jo, S. I. Choi, J. H. Kwan, and S. M. Ahn(2006), Aerodynamic Analysis and Design Optimization of Wing-sails, Journal of the Korean Society for Computational Fluids Engineering, pp. 350-363.
  7. Lee, K. S., Z. Huque, and S. E. Han(2015), A study on the y+ Effect on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine, Journal of the Korean Association for Spatial Structures, pp. 75-84.
  8. Li, Q., Y. Nihei, T. Nakashima, and Y. Ikeda(2015), A study on the performance of cascade hard sails and sail-equipped vessels, Ocean Engineering, pp. 23-31.
  9. Mark, N.(2006), A hardware proof of concept of a sailing robot for ocean observation, IEEE Journal of Oceanic Engineering, Vol. 31, No. 2, pp. 462-469. https://doi.org/10.1109/JOE.2006.875101
  10. Nam, J. C.(2000), Marine Survey Ship (No.2000) in Sailing, The Journal of Korean Meteorological Society, Vol. 10, No. 2, pp. 15-17.
  11. Park, S. R., J. H. Yoo, and C. Y. Song(2013), Fluid-Structure Interaction Analysis on the Deformation of Simplified Yacht Sails, Journal of the Society of Naval Architects of Korea, Vol. 50, No. 1, pp. 33-40. https://doi.org/10.3744/SNAK.2013.50.1.33
  12. Pham, M. N., B. G. Kim, and C. J. Yang(2020), Shape and Spacing Effect in Curvy Twin Sail for Autonomous Sailing Drone, The Journal of the Korean Society of Marine Environment & Safety, Vol. 26, No. 7, pp. 931-941. https://doi.org/10.7837/kosomes.2020.26.7.931
  13. Sheldahl, R. E. and P. C. Klimas(1981), Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, Technical Report No. SAND80-2114, Sandia National Laboratories, Albuquerque, New Mexico.
  14. Timmer, W. A.(2008), Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018, Wind Engineering, 32(6), pp. 525-537. https://doi.org/10.1260/030952408787548848