DOI QR코드

DOI QR Code

Simulation for Development and Validation of Drone for Inspection Inside Boilers in High Temperature Thermal Power Plants Using AirSim

AirSim을 이용한 화력발전소 고온 환경의 보일러 내부 점검용 드론 개발 및 검증을 위한 시뮬레이션

  • Park, Sang-Kyu (Department of Aerospace Engineering, Pusan National University) ;
  • Jeong, Jin-Seok (Department of Aerospace Engineering, Pusan National University) ;
  • Shi, Ha-Young (Department of Aerospace Engineering, Pusan National University) ;
  • Kang, Beom-Soo (Department of Aerospace Engineering, Pusan National University)
  • Received : 2020.09.23
  • Accepted : 2020.12.14
  • Published : 2021.01.01

Abstract

This paper is a preliminary study for the development of a drone for inspection inside a boiler in a thermal power plant, which is a high-temperature environment, and validated whether the drone can fly normally through a high-temperature environment simulation using AirSim. In a high-temperature flight environment, the aerodynamic characteristics of the air density and viscosity are different from room temperature, and the flight performance of the drone is also changed accordingly. Therefore, in order to confirm the change of the aerodynamic characteristics of the propeller according to the temperature change, the propeller analysis and thrust test through JBLADE, and the operation characteristics prediction through the electric propulsion system performance prediction model were performed. In addition, the analysis and performance prediction results were applied to AirSim for simulation, and the aircraft redesigned through the analysis of the results. As a result of the redesign, it was confirmed that about 65% of the maximum power used before the redesign was reduced to 52% to obtain the necessary thrust when hovering in an environment of 80℃.

본 논문은 고온 환경의 화력발전소 보일러 내부 점검용 드론 개발을 위한 선행연구로 AirSim을 이용한 고온 환경에서의 시뮬레이션을 통해 드론이 정상적인 비행이 가능한지 검증 하였다. 고온의 비행 환경에서는 공기 밀도, 점성계수 등이 상온과 달라 공력특성이 달라지며 이에 따라 드론의 비행성능 또한 달라진다. 따라서 온도 변화에 따른 프로펠러의 공력 특성의 변화를 확인하기 위해 JBLADE를 통한 프로펠러 해석과 추력 테스트, 전기추진계통 성능예측모델을 통한 동작특성예측을 수행하였다. 그리고 해석 및 성능예측 결과를 AirSim에 적용해 시뮬레이션을 진행하고 결과 분석을 통해 기체 재설계를 진행하였다. 재설계 결과 80℃의 환경에서 호버링 시 필요한 추력을 얻기 위해 재설계 전 최대 출력의 약 65% 사용하던 것이 52%로 감소함을 확인하였다.

Keywords

Acknowledgement

이 논문은 2017년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(N0002431, 2017년 산업전문인력역량강화사업).

References

  1. Gyeongsangbuk-do, "Research report on domestic and overseas trends in the drone industry based on the 4th industrial revolution," November 2019.
  2. Kim, I. K., Kim, K. M., Choi, J. Y., Cho, K. T. and Ryu, T. H., "A Study on the Application of Environmental Monitoring in Boiler of Thermal Power Plants Using UWB base Multi copter," Proceeding of The Society for Aerospace System Engineering Fall Conference, February 2018, pp. 1-2.
  3. Moon, J. H., Kim, T. Y., Kang, S. and Jung H. H., "Development of UAV Flight Control Software using Model-Based Development(MBD) Technology," Journal of the Korean society for aeronautical and space sciences Vol. 38, No. 12, December 2010, pp. 1217-1222. https://doi.org/10.5139/JKSAS.2010.38.12.1217
  4. Byun, J. B., Hur, G. B., Lee, K. H. and Suk, J. Y., "A Study on UAV Flight Control System HILS Test Environment," Journal of the Korean society for aeronautical and space sciences Vol. 44, No. 4, April 2016, pp. 316-323. https://doi.org/10.5139/JKSAS.2016.44.4.316
  5. Sun, J. X., Li, B. Y., Wen, C. Y. and Chen, C. K., "Design and Implementation of a Real-Time Hardware-in-the-Loop Testing Platform for a Dual-Rotor Tail-Sitter Unmanned Aerial Vehicle," Mechatronics, Vol. 56, December 2018, pp. 1-15. https://doi.org/10.1016/j.mechatronics.2018.10.001
  6. Shah, S., Dey, D., Lovett, C. and Kapoor, A., "AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles," Field and Service Robotics, Springer, Cham, 2018, pp. 621-635.
  7. https://www.flyability.com/elios/
  8. Morgado, J. P. S., "Development of an Open Source Software Tool for Propeller Design in the MAAT Project," PhD Thesis. Universidade da Beira Interior (Portugal), 2016.
  9. https://www.rcbenchmark.com/pages/series-1580-thrust-stand-dynamometer
  10. Jeong, J. S., Byun, Y. S., Song, W. J. and Kang, B. S., "Study on Performance Prediction of Electric Propulsion System for Multirotor UAVs," Journal of The Korean Society for Precision Engineering, Vol. 33, No. 6, 2017, pp. 499-508. https://doi.org/10.7736/KSPE.2016.33.6.499
  11. Fussell, B. K., "Thermal Effects on the TorqueSpeed Performance of a Brushless DC motor," Proceeding of Electrical/Electronics Insulation Conference, IEEE, 1993, pp. 403-411.
  12. https://m-selig.ae.illinois.edu/props/propDB.html