DOI QR코드

DOI QR Code

Development of Preliminary Conceptual Design/ Comprehensive Analysis Programs for Next Generation Rotorcraft

차세대 회전익 기본개념설계/통합해석 프로그램의 개발

  • Oh, Sejong (Department of Aerospace engineering, Pusan National University) ;
  • Park, Donghoon (Department of Aerospace engineering, Pusan National University) ;
  • Ji, Hyung Min (Department of Combat Development/Force Development section, Army Aviation School)
  • Received : 2020.10.15
  • Accepted : 2020.12.23
  • Published : 2021.01.01

Abstract

The authors had presented two previous papers[1,2] on Helicopter/Rotorcraft develoment in Europe and US. Meanwhile, the next generation rotorcrafts, currently under development in US and Europe, have new configurations (tilt-rotor, coaxial, compound) of rotor-type vertical takeoff/landing rotorcrafts to overcome the disadvantages of traditional helicopters. For developing these new types of rotorcrafts, the upgraded conceptual design/comprehensive programs are required. In US and Europe, they are already developing new program tools with their technologies and database obtained during more than last half centuries. For us, many academia, research institutes and industrial engineers have experienced and developed core technologies on rotorcrafts (aerodynamics, structural analysis, flight dynamics, and noise analysis etc.) comparable to US and Europe during last couple of decades of developing helicopters and various configurations of rotorcrafts. In this paper, the pros and cons of conceptual design/comprehensive tools currently used in US and Europe have been summarized. Furthermore, the possibilities and problems to develope our own design and analysis tools have been studied.

저자는 이전 두 편의 논문[1,2]을 통하여 미국과 유럽의 헬리콥터/회전익 개발에 대한 현황을 발표하였다. 그러나, 최근 세계적으로 진행되고 있는 차세대 회전익의 개발은, 이제까지 전통적으로 사용되었던 헬리콥터의 단점을 보완하는 새로운 형상(틸트 로터, 동축반전, 복합형)의 회전익 수직 이착륙기들이 나타나고 있다. 이러한 새로운 형상의 회전익 개발을 위해서는, 이제까지 전통적인 헬리콥터 개발에 사용되었던 기본개념설계/통합해석 프로그램을 한 단계 업그레이드한 새로운 설계/해석 프로그램이 필요하다. 미국과 유럽에서는 이미 반세기 이상 자체 축적되었던 기술 및 데이터 베이스를 이용하여 새로운 개발 프로그램들이 만들어지고 있다. 국내에서도 지난 20여 년간 헬리콥터와 다양한 형상의 회전익 개발이 이루어지면서 국내 연구진들에 의해 요소기술(공력, 구조해석 및 동역학, 비행역학, 소음해석 등 분야)들이 개발되었고 여전히 진행 중이다. 이들 개발된 요소기술들의 성숙도는 해외 선진국에 상응하는 정도이다. 본 논문에서는 미국/유럽에서 사용되고 있는 차세대 회전익 개발에 사용되는 기본개념설계/통합해석 프로그램들에 대한 장/단점들을 요약해 보고, 또한 앞에서 언급한 국내 연구진들에 의해 축적된 기술들에 대한 평가와, 이들을 통합하여 우리자체의 기본개념설계/통합해석 프로그램을 개발하는 가능성과 문제점들을 조사해 보았다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음. 본 논문에 참고되지 않은 많은 연구 및 자료들이 있을 것을 알면서, 참고되지 않은 많은 연구자들에게 양해를 구하는 바입니다. 또한 논문 작성에 도움을 주신 육군항공학교의 지형민 소령님에게 감사드립니다.

References

  1. Oh, S. J. and Kim, S. H., "Next Generation Rotorcraft Technologies in USA and Europe," Journal of The Korean Society for Aeronautical and Space Science, Vol. 42, No. 8, 2014, pp. 713-721. https://doi.org/10.5139/JKSAS.2014.42.8.713
  2. Oh, S. J. and Park, D. H., "Development of European Rotorcraft in 21st Century," Journal of The Korean Society for Aeronautical and Space Science, Vol. 46, No. 8, 2018, pp. 679-686. https://doi.org/10.5139/JKSAS.2018.46.8.679
  3. Friedmann, P. P., "Rotary-Wing Aeroelasticity : Current Status and Future Trends," AIAA Journal, Vol. 42, No. 10, 2004, pp. 1953-1972. https://doi.org/10.2514/1.9022
  4. Lier, M., et al, "A Toolbox for Rotorcraft Preliminary Design," AHS 71st Annual Forum, 2015.
  5. McLean, C. and Schoemaker, A., "For Data Centers, Design with Construction Safety in Mind," Facilitiesnet, August 2019.
  6. Kim, J., "Consideration of International Competitiveness of Korean Aerospace Business," KSAS Aerodynamics Workshop, 2014.
  7. Lee, D. J., "Surion and Helicopter accidents in Foreign Countries," KSAS Summer Rotorcraft Workshop, 2017.
  8. Tegler, J., "Noise Alert," Aerospace America, Sepetember 2020.
  9. Helicopter Noise Reduction Technology, ICAO Report, April 2015.
  10. https://en.wikipedia.org/wiki/Future_Vertical_Lift
  11. Hwang, C., "Current Industrial and Technological Trends in Aerospace," Aerospace Issues, Vol. 16, No. 1, 2018.
  12. Helicopter Noise Reduction Technology, Status, Report by Snecma, Airbus Helicopter, Sikorsky Aircraft, Bell Helicopter, AgustaWestland, Turbomeca, Marenco Swisshelicopter, 2015.
  13. Johnson, W. and Datta, A., "Requirements for the Next Generation Comprehensive Analysis of Rotorcaft," AHS Specialist's Conference on Aeromechanics, San Francisco, January 23-25, 2008.
  14. Yamaguchi, G. K. and Yung, L. A., "A Status of NASA Rotorcraft Research," NASA/TP-2009-215369, 2009.
  15. Helicopter Aeromechanics, AGARD LS No. 139, 1985.
  16. Wayne Johnson, "Milestones in Rotorcraft Aeromechanics," NASA/TP-2011-0215971.
  17. Ji, H. M., "Comments on Comprehensive Analysis and Design Program for Next Generation Korean Rotorcrafts," R.O.K. Army Training & Doctrine Command, 2020.
  18. Johnson, W., NDARC : NASA Design and Analysis of Rotorcraft, Theory, 2012.
  19. Lee, C. Y., Ko, K. H., Jung, S. N. and Yu, Y. H., "Preliminary design and cost estimation of helicopters," Journal of The Korean Society for Aeronautical and Space Science, Vol. 38, No. 4, 2010, pp. 309-314. https://doi.org/10.5139/JKSAS.2010.38.4.309
  20. Kim, S. B. and Choi, J. S., "A Study on Establishment of the Helicopter Initial Design Model Using the Modified Weight Estimation Equation," Journal of The Korean Society for Aeronautical and Space Science, Vol. 43, No. 3, 2015, pp. 213-223. https://doi.org/10.5139/JKSAS.2015.43.3.213
  21. Schwartzberg, M. A., Smith, R. L., Means, J. L., Law, H. Y. H. and Chappell, D. P., "Single-Rotor Helicopter Design and Performance Estimation Program (SSP)," SRIO Report No. 77-1, 1977.
  22. Davis, S. J., Rosenstein, H., Stanzione, K. A. and Wisniewski, J. S., "User's Manual for HESCOMP, The Helicopter Sizing and Performance Computer Program," Boeing Vertol Company, Report No. NADC-78265-60, 1979.
  23. Schoen, A. H., Rosenstein, H., Stanzione, K. and Wisniewski, J. S., "The V/STOL Aircraft Sizing and Performance Computer Program," Boeing report, 1980.
  24. Georgia Tech Preliminary Design and Performance (GTPDP) program User's Manual, 2003.
  25. Russel, C. and Basset, P., "Conceptual Design of Environmentally Friendly Rotorcraft-A Comparison of NASA and ONERA Approaches," AHS 71st Annual Forum, 2015.
  26. Joo, J., Kim, D. K. and Rhiu, J. J., "Basic study on the Conceptual Design of Multi-purpose Helicopter," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 1999, pp. 291-294.
  27. Chang, S., Jeon, K. S., Kang, H. J., Yu, Y. H. and Lee, J. W., "Development of Rotorcraft conceptual Design and Performance Analysis Code," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2005, pp. 1092-1095.
  28. Choi, W., Hwang, Y. S., Kim, C. H., Kim, S. H., Lee, D. H. and Park, C. W., "The Development of the Rotorcraft Multidisciplinary Design Optimization Framework and Conceptual Design Using the KHP-SDM RMDO" Journal of The Korean Society for Aeronautical and Space Science, Vol. 37, No. 7, 2009, pp. 685-692. https://doi.org/10.5139/JKSAS.2009.37.7.685
  29. Lim, J., Kim, J. M. and Shin, S. J., "Development of an Improved Optimization Framework for the Preliminary Design of a Rotorcraft" Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2012, pp. 554-559.
  30. Go, K. M., Kang, S. E., Kim, S. H., Lee, D. H., Jang, Y. J., Choi, W., Hang, Y. S. and Kim, C. H., "Performance Analysis and Optimization using Helicopter Design and Analysis Program," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2007, pp. 624-628.
  31. Kim, W. J., Chae, S. H., Oh, S. J., Kim, S. B., Ahn, I. K. and Yee, K. J., "Systematic Determination of Empirical Parameters Used in Helicopter Conceptual Design," Journal of The Korean Society for Aeronautical and Space Science, Vol. 40, No. 8, 2012, pp. 703-710. https://doi.org/10.5139/JKSAS.2012.40.8.703
  32. Chae, S. H., Lee, J. B., Yee, K. J. and Oh, S. J., "Helicopter Performance Analysis on External Armed Configuration," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2012, pp. 2428-2434.
  33. Du Val, R. W. and He, C., "Validation of the FLIGHTLAB virtual engineering toolset," The Aeronautical Journal, Vol. 122, Issue 1250, 2018, pp. 519-555. https://doi.org/10.1017/aer.2018.12
  34. Johnson, W., "A History of Rotorcraft Comprehensive Analyses," NASA/TP-2012-216012, 2012.
  35. Chopra, I., "Center for Rotorcraft Education and Research," US Army report AD-A266760, 1993.
  36. Sopher, R. and Twomey, W. J., "Calculation of Flight Vibration Levels of the AH-1G Helicopter and Correlation with Existing Flight Vibration Measurements," NASA CR-182031, 1990.
  37. Yen, J. G., Corrigan, J. J., Schillings, J. J. and Hsieh, P. Y., "Comprehensive Analysis Methodology at Bell Helicopter : COPTER," AHS Aeromechanics Specialists Conference, January 1994.
  38. Benoit, B., Dequin, A. M. and Kampa, K., "HOST, a General Helicopter Simulation Tool for Germany and France," AHS 56th Annual Forum, May 2-4, 2000.
  39. johnson-aeronautics.com/documents/CAMRADII
  40. Kim, K. C., "Analytical Calculation of Helicopter Rotor Blade Flight Loads in Hover and Forward Flight," ARL-TR-3180, 2004.
  41. Bir, G. S., "Structural Dynamics Verification of Rotorcraft Comprehensive Analysis System (RCAS), NREL/TP-500-35328, 2005.
  42. Bauchau, O. A., Bottasso, C. L. and Nikishkow, Y. G., "Modeling Rotorcraft Dynamics with Finite Element Multibody Procedure," Mathematical and Computer Modeling, Vol. 33, 2001, pp. 1113-1137. https://doi.org/10.1016/S0895-7177(00)00303-4
  43. Oh, S. J., et al, "Development of Comprehensive Analysis Program for Rotor System," Final Report of Consignment Research of KHP, 2012.
  44. Mikheyev, S. V., et al, "Ka-50 Attack Helicopter Aerobatic Flight," 24th European Rotorcraft Forum, September 1998.
  45. Pan, L. and Renliang, C., " A Mathematical Model for Helicopter Comprehensive Analysis," Chinese Journal of Aeronautics, Vol. 23, 2010, pp. 320-326. https://doi.org/10.1016/S1000-9361(09)60222-3
  46. Yavrucuk, I., Tarimci, O., Katircioglu, M., Kubali, E. and Yilmaz, D., "A New Helicopter Simulation and Analysis Tool : HELIDYN+," European Rotorcraft Forum, 2009.
  47. Avera, M., Kang, H. and Singh, R., "Comprehensive Rotorcraft Analysis for Preliminary Design and Optimization," AHS 71st Annual Forum, 2015.
  48. Smith, M. J., "Aerodynamics and Aeroelasticity Methodologies for Future Concepts in Vertical Flight," RAES Presentation materials, 2019.
  49. Thiemeier, J., Ohrle, C., Frey, F., Kessle, M. and Kramer, E., "Aerodynamics and Flight Mechanics Analysis of Airbus Helicopter's Compound Helicopter RACER in hover under crosswind conditions," CEAS Aeronautical Journal, Vol. 11, 2020, pp. 49-66. https://doi.org/10.1007/s13272-019-00392-3
  50. Beaumier, P., van der Wall, B., Pengel, K., Kessler, C., Gervais, M., Delrieux, Y., Hirsch, J. F. and Crozier, P., "From ERATO Basic Research to the Blue EdgeTM Rotor Blade : an Example of Virtual Engineering?," Rotorcraft Virtual Engineering, Liverpool, November 8-10, 2016.
  51. Khalid, A. S., "Development and Implementation of Rotorcraft Preliminary Design Methodology using Multidisciplinary Design optimization," Ph. D. theis, Georgia Institute Technology, 2006.
  52. Kim, J., "Final Evaluation Report of SUAV," KARI, 2012.
  53. Requirements of LCH Co-operative Research Proposal, KAI, 2015.
  54. Kim, Y. S., Choi, S. W. and Kim, J. M., "Trim Analysis of Smart UAV Using CAMRAD II," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, pp. 1010-1014.
  55. Shin, J. W., Kim, S. J., Lee, S. and Choi, I. H., "Loads Analysis of Smart UAV for Detailed Desing Phase," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2006, pp. 539-542
  56. Lee, J. J., Kim, J. M., Lim, C. H. and Han, J. W., "Development of Airframe for Smart UAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2008, pp. 410-413.
  57. Kim, D. H., Lee, J. Y., Kim, Y. S., Lee, M. G. and Kim, S. H., "Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV," Journal of The Korean Society for Aeronautical and Space Science, Vol. 34, No. 6, 2006, pp. 75-82. https://doi.org/10.5139/JKSAS.2006.34.6.075
  58. Go, J. I., Park, J. S. and Choi, J. S., "Validation Study on Conceptual Design and Performance Analysis for Helicopter using NDARC," Journal of The Korean Society for Aeronautical and Space Science, Vol. 44, No. 10, 2016, pp. 877-886. https://doi.org/10.5139/JKSAS.2016.44.10.877
  59. Choi, S., et al, "Final Report of Research for Next Generation Aircraft Technology Integration," KARI, 2018.
  60. Lee, J., "Development of Improved Rotor Blade Tip Shape using Multidisciplinary Design Analysis and Optimization," European Rotorcraft Forum, Delft, 2018.
  61. Lee, D., "Necessity and Proposal for Integration of interdisciplinary technology for rotorcraft," KASA winter Rotorcraft workshop, 2017.
  62. Lee, Y. L., Kim, D. Y., Kim, D. H., Hong, S. B. and Park, J. S., "Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System," Journal of The Korean Society for Aeronautical and Space Science, Vol. 48, No. 6, 2020, pp. 443-453. https://doi.org/10.5139/JKSAS.2020.48.6.443
  63. Im, B. W., Eun, W. J. and Shin, S. J., "Design and Analysis of Flexbeam in SNUF Blade Equipped with Active Trailing-Edge Flap for Helicopter Vibration Load Reduction," Journal of The Korean Society for Aeronautical and Space Science, Vol. 46, No. 7, 2020, pp. 542-550. https://doi.org/10.5139/JKSAS.2018.46.7.542
  64. Nah, D. H., You, Y. H. and Jung, S. N., "A Study on validation of Airloads for an isolated Rotor in High Speed Flight," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2017, pp. 664-665.
  65. Sa, J. H., Kim, J. W., Park, S. H., Park, J. S., Jung, S. N. and Yu, Y. H., "KFLOW Results of Airloads on HART-II Rotor Blades with Prescribed Blade Deformation," International Journal of Aeronautical and Space Sciences, Vol. 10, No. 2, 2009, pp. 52-62. https://doi.org/10.5139/IJASS.2009.10.2.052
  66. Kim, T. W., Oh, S. J. and Yee, K. J., "Improved actuator surface method for wind turbine application," Renewable Energy, Vol. 76, 2015, pp. 16-26. https://doi.org/10.1016/j.renene.2014.11.002
  67. Hahn, D. and Lee, S., "Optimization of Blade Tip Shape for Reducing Noise by Genetic Algorithm," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2017, pp. 488-489.
  68. Park, M. J., Park, S. H., Lee, H. J. and Lee, D. J., "Development of acoustic code with permeable surface in high-order scheme," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2016, pp. 669-672.
  69. Yoon, Y. H., Yang, C. D., Kim, C. J. and Jo, I. J., "Flight Dynamic Analysis Program, HETLAS for the Development of Helicopter FBW System" Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2012, pp. 1270-1275.
  70. Jung, S. N., You, Y. H., Kim, J. W., Sa, J. H., Park, J. S. and Park, S. H., "Correlation of Aeroelastic Response and Structural Loads for a Rotor in Descent," Journal of Aircraft, Vol. 49, No. 2, 2012.
  71. Ryu, H. Y., Shin, S. J., Kwak, J. S., Lee, J. B., Yee, K. J. and Kim, D. K., "Fluid-Structure Combined Analysis for a Helicopter Forward Flight," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2011, pp. 676-679.
  72. Oh, S., "Introduction to Korean Rotorcraft Developement Program," 6th Asian Australian Rotorcraft Forum, 2017.
  73. Choi, S. W., "Configuration Design and Performance Analysis for the Sub-scale OPPAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2019, pp. 609-630.
  74. Hwang, C. and Choi, S., "OPPAV eVTOL Prototype and Certification Technology Development," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2019, p. 547.
  75. https://www.statista.com/statistics/259396/global-combat-helicopter-fleet-by-country/