DOI QR코드

DOI QR Code

Dubins Path Generation and Tracking of UAVs With Angular Velocity Constraints

각속도 제한을 고려한 무인기의 Dubins 경로 생성 및 추적

  • Yang, You-young (Department of Aerospace Engineering, Chosun University) ;
  • Jang, Seok-ho (Department of Aerospace Engineering, Chosun University) ;
  • Leeghim, Henzeh (Department of Aerospace Engineering, Chosun University)
  • Received : 2020.10.19
  • Accepted : 2021.01.18
  • Published : 2021.02.01

Abstract

In this paper, we propose a path generation and tracking algorithm of an unmanned air vehicle in a two-dimensional plane given the initial and final points. The path generation algorithm using the Dubins curve proposed in this work has the advantage that it can be applied in real time to an unmanned air vehicle. The path tracking algorithm is an algorithm similar to the line-of-sight induction algorithm. In order to efficiently control the direction angle, a gain related to the look ahead distance concept is introduced. Most of UAVs have the limited maximum curvature due to the structural constraints. A numerical simulation is conducted to follow the path generated by the sliding mode controller considering the angular velocity limit. The path generation and tracking performance is verified by comparing the suggested controller with conventional control techniques.

본 논문에서는 초기지점과 최종지점이 주어졌을 때 2차원 평면에서 무인기의 경로 생성 및 추적 문제에 대해 제안한다. Dubins 곡선을 이용한 경로 생성 알고리즘은 계산 속도가 빨라 무인기에 실시간으로 적용 가능하다는 장점이 있다. 경로 추적 알고리즘은 가시거리 유도 알고리즘과 유사한 알고리즘으로 효율적으로 방향각을 제어하기 위해 전방주시거리 개념과 관련된 이득 값을 추가하였다. 무인기의 경우 최대 곡률이 제한된다. 정밀한 제어를 위해 쿼드로터 모델을 사용하였다. 각속도 제한을 고려한 슬라이딩 모드 제어기를 통해 최대 곡률을 벗어나지 않고 경로를 추종하는 시뮬레이션을 진행하였다. 제약조건이 없는 제어기와 제약조건이 있는 제어기를 비교하여 경로 생성 및 추적 성능을 검증하였다.

Keywords

Acknowledgement

본 연구는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다.

References

  1. Gu, D. W., Kamal, W. and Postlethwaite, I., "A UAV Waypoint Generator," AIAA 1st Intelligent Systems Technical Conference, Chicago, September 2004, pp. 20-22.
  2. Pachter, M. and Chandler, P. R., "Challenges of autonomous control," IEEE Control Systems Magazine, Vol. 18, No. 4, August 1998, pp. 92-97. https://doi.org/10.1109/37.710883
  3. Delahaye, D., Puechmorel, S., Tsiotras, P. and Feron, E., "Mathematical models for aircraft trajectory design : A survey," Air Traffic Management and Systems, Tokyo, 2014, pp. 205-247.
  4. Dubins, L. E., "On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents," American Journal of mathematics, Vol. 79, No. 3, July 1957, pp. 497-516. https://doi.org/10.2307/2372560
  5. Yang, G. and Kapila, V., "Optimal path planning for unmanned air vehicles with kinematic and tactical constraints," Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, 2002, pp. 1301-1306.
  6. Wong, H., Kapila, V. and Vaidyanathan, R., "UAV optimal path planning using C-C-C class paths for target touring," 2004 43rd IEEE Conference on Decision and Control, Bahamas, 2004, pp. 1105-1110.
  7. Anderson, E. P. and Beard, R. W., "An algorithmic implementation of constrained extremal control for UAVs," AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, 2002, p. 4470.
  8. Pettersen, K. Y. and Lefeber, E., "Way-point tracking control of ships," Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 1, Orlando, 2001, pp. 940-945.
  9. Fossen, T. I., Breivik, M. and Skjetne, R., "Line-of-Sight path following of underactuated marine craft," Proceedings of 6th IFAC Manoeuvring and Control of Marine Craft, Girona, 2003, pp. 244-249.
  10. Breivik, M. and Fossen, T. I., "Path following of straight lines and circles for marine surface vessels," Proceedings of the 6th IFAC CAMS, Ancona, 2004, pp. 65-70.
  11. Lee, H. J., Hong, C. H. and Bang, H, "Nonlinear flight control based on model inversion using neural networks," Proceedings of 39th The Japan Society for Aeronautical and Space Sciences Aircraft Symposium, 2002.
  12. Lim, H. W., Jie, M. S. and Choi, W. H., "Developing a Safety Flight Assurance Control (SFAC) System using a Quadcopter," Advanced Science and Technology Letters, Vol. 140, 2016, pp. 124-128.
  13. Sorensen, A. F., "Autonomous Control of a Miniature Quadrotor Following Fast Trajectories," Master's Thesis Aalborg University U.C. Berkeley, June, 2010.
  14. Stevens, B. L. and Lewis, F. L., "Aircraft control and simulation: dynamics, controls design, and autonomous systems," John Wiley & Sons, 2015.
  15. Shtessel, Y., Edwards, C., Freidman, L. and Levant, A., "Sliding Mode Control and Observation," New York: Springer, New York, 2013, pp. 1-42.
  16. Jang, S. H., Yang, Y. Y. and Leeghim, H., "Performance Analysis for Quadrotor Attitude Control by Super Twisting Algorithm," The Korean Society for Aeronautical and Space Sciences, Vol. 48, No, 5, May 2020, pp. 373-381. https://doi.org/10.5139/JKSAS.2020.48.5.373
  17. Zhihong, M., Paplinski, A. P. and Wu, H. R., "A robust terminal sliding mode control scheme for rigid robotic manipulators," IEEE Transactions on Automatic Control, Vol. 39, No. 12, December 1994, pp. 2464-2469. https://doi.org/10.1109/9.362847
  18. Yang, Y. Y., "VTOL Development for Obstacle Awareness and Collision Avoidance," Domestic Master's Thesis Graduate School Chosun University, 2018.