DOI QR코드

DOI QR Code

Improvement Method for the Post-Management End System of a Landfill by Applying Total Pollutant Load Concept

오염총량 개념을 적용한 매립장 사후관리종료제도 개선 방안

  • Chun, Seung-Kyu (Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Sim, Nak-Jong (SUDOKWON Landfill Site Management Corporation) ;
  • Jeon, Eun-Jeong (SUDOKWON Landfill Site Management Corporation) ;
  • Ryu, Don-Sik (SUDOKWON Landfill Site Management Corporation)
  • Received : 2020.11.30
  • Accepted : 2021.01.21
  • Published : 2021.02.01

Abstract

A method of improving the post-management end system of a landfill that reflected total pollutant load was applied to the SUDOKWON 1st Landfill Site. Modeling results showed that the ratio of remaining methane, when compared to the total maximum potential of 2,521 × 106 Nm3, was estimated to be 8.8% in 2020, 7.0% in 2030, and 6.5% in 2040. If the average oxidation rate of 89.1% in 2005-2019 was applied, the ratio decreased by 1.01% in 2020, 0.76% in 2030, and 0.70% in 2040. This suggests that if the amount of methane generated is all emitted from the surface of the landfill after 2025, the real amount emitted to the atmosphere is less than that in 2019; therefore, the post-management end is possible. According to the results of trend analysis of the quality of leachate water, effluent criteria for Biochemical Oxygen Demand (BOD) can be satisfied in 2024, while those for Chemical Oxygen Demand (COD) and Total Nitrogen (T-N) can be satisfied in 2047 and 2117, respectively. If the post-management end system changed based on total pollutant load, the post-management can be terminated BOD today and COD within a few years; however, the fact that T-N could be terminated only after 2041 shows the need to fundamentally change management methods.

오염총량 개념을 반영한 매립장 사후관리종료제도 개선방안을 수도권매립지 제1매립장을 대상으로 적용하여 분석하였다. 매립가스 모델을 통해 분석한 메탄 잔여비율은 총 발생 가능량인 2,521×106 Nm3에 대하여 2020년 8.8%, 2030년 7.0%, 2040년 6.5%이었다. 2020년 이후의 표면발산 메탄량에 2005~2019년의 평균 산화율 89.1%를 적용할 경우, 실제 배출기준 메탄 잔여율은 2020년 1.01%, 2030년 0.76%, 2040년 0.70%로서 2025년 이후 메탄이 전량 표면 발산되어도 2019년 기준 표면 발산량보다 적어 사후관리 종료가 가능하였다. 침출수 수질에 대한 추이분석 결과, BOD는 2024년, COD 2047년, T-N은 2117년경에 배출허용기준을 만족할 수 있을 것으로 추정되었다. 사후관리종료를 배출부하량을 기준으로 변경할 경우 BOD는 현 시점에서 그리고 COD도 수년 내 사후관리종료가 가능하나, T-N의 경우 2041년 이후에나 가능하여 근본적인 관리방식의 전환이 필요한 것으로 분석되었다.

Keywords

References

  1. Bae, W. K., Kim, S. G., Lee, J. H. and Chung, J. W. (2019), Effect of leachate circulation with ex situ nitrification on waste decomposition and nitrogen removal for early stabilization of fresh refuse landfill, Journal of Hazardous Materials, Vol. 371, pp. 721-727. https://doi.org/10.1016/j.jhazmat.2019.03.058
  2. Chen, Y. M., Xu, W. J., Ling, D. S., Zhan, L. T. and Gao, W. (2020), A degradation-consolidation model for the stabilization behavior of landfilled municipal solid waste, Computers and Geotechnics, Vol. 118, https://doi.org/10.1016/j.compgeo.2019.103341.
  3. Chun, S. K. (2018), Mass balance analysis on the behavior of major elements disposed at a waste landfill site, Waste Management, Vol. 71, pp. 233-243. https://doi.org/10.1016/j.wasman.2017.10.050
  4. Di Trapani, D., Di Bella, G. and Viviani, G. (2013), Uncontrolled methane emissions from a MSW landfill surface: Influence of landfill features and side slopes, Waste Management, Vol. 33, No. 10, pp. 2108-2115. https://doi.org/10.1016/j.wasman.2013.01.032
  5. Feng, S., Ng, C. W. W., Leung, A. K. and Liu, H. W. (2017), Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover, Waste Management, Vol. 68, pp. 355-368. https://doi.org/10.1016/j.wasman.2017.04.042
  6. Giner-Sanz, J. J., Ortega, E. M. and Perez-Herranz, V. (2015), Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation, International Journal of Hydrogen Energy, Vol. 40, No. 34, pp. 11279-11293. https://doi.org/10.1016/j.ijhydene.2015.03.135
  7. Green Energy Development Co., Ltd. (GRENCO) (2016), The influence of waste energy recovery and resource recovery of sludge on landfill process of Sudokwon landfill, pp. 41-48 (In Korean).
  8. Intergovernmental Panel on Climate Change (IPCC) (2006), 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 5, 3.17.
  9. Kim, D. O., Kim, T. Y., Kim, M. H. and Kim, M. I. (2009), Reclamation of closed non-sanitary landfills by sorting transfer control, Journal of the Korean Geo-Environmental Society, Vol. 10, No. 1, pp. 15-23.
  10. Kim, J. K., Kim, S. K. and Park, N. B. (2004), A study on the chemical characteristics of waste and leachate on landfill site, J. Korea Society of Waste Management, Vol. 21, No. 6, pp. 607-617.
  11. Lee, B. C., Lee, M. H., Park, S. C., Jeong, S. K., Han, Y. S. and Yeon, I. J. (2009), Analysis by environmental factor of similar closed non-sanitary landfills, Journal of the Korean Geo-Environmental Society, Vol. 10, No. 6, pp. 27-33.
  12. Li, K., He, J., Li, J., Guo, Q., Liang, S., Li, Y. and Wang, X. (2018), Linking water quality with the total pollutant load control management for nitrogen in Jiaozhou Bay, China, Ecological Indicators, Vol. 85, pp. 57-66. https://doi.org/10.1016/j.ecolind.2017.10.019
  13. Morris, J. W. F. and Barlaz, M. A. (2011), A performance-based system for the long-term management of municipal waste landfills, Waste Management, Vol. 31, No. 4, pp. 649-662. https://doi.org/10.1016/j.wasman.2010.11.018
  14. Monster, J., Kjeldsen, P. and Scheutz, C. (2019), Methodologies for measuring fugitive methane emissions from landfills - A review, Waste Management, Vol. 87, pp. 835-859. https://doi.org/10.1016/j.wasman.2018.12.047
  15. Park, J. K., Kim, R. H. and Lee, N. H. (2019), Determination of IPCC landfill gas generation model parameters using iterative non-linear least square method, J. Korea Society of Waste Management, Vol. 36, No. 3, pp. 308-320. https://doi.org/10.9786/kswm.2019.36.3.308
  16. Park, S. C., Cho, B. R., Jeong, J. H., Lee, M. H., Kim, T. Y. and Park, J. H. (2008), Assessment on environmental stabilization of used open dumping landfill - a case study of Kamkok landfill, Journal of the Korean Geo-Environmental Society, Vol. 9, No. 6, pp. 13-19.
  17. Pearse, L. F., Hettiaratchi, J. P. and Kumar, S. (2018), Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste - A review, Bioresource Technology, Vol. 254, pp. 312-324. https://doi.org/10.1016/j.biortech.2018.01.069
  18. Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., Moreau-Le Golvan, Y. and Hebe, I. (2006), Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?, Waste Management, Vol. 26, No. 5, pp. 516-525. https://doi.org/10.1016/j.wasman.2005.07.021
  19. Stromberg, S., Nistor, M. and Liu, J. (2014), Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests, Waste Management, Vol. 34, pp. 1939-1948. https://doi.org/10.1016/j.wasman.2014.07.018
  20. SUDOKWON Landfill Site Management Corp. (SLC) (2017a), The survey report on managed landfill (In Korean).
  21. SUDOKWON Landfill Site Management Corp. (SLC) (2017b), 2016 Site monitoring and generation characteristic analysis of LFG from sudokwon landfill, pp. 99-100 (In Korean).
  22. SUDOKWON Landfill Site Operation and Management Association (SLA) (1997), Analysis and investigation on the installation efficiency of LFG treatment facility, p. 102 (In Korean).
  23. Sun, W., Wang, X., DeCarolis, J. F. and Barlaz, M. A. (2019), Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills, Waste Management, Vol. 91, pp. 120-127. https://doi.org/10.1016/j.wasman.2019.05.004
  24. Won, C. H., Kim, Y. K. and Kim Y. D. (1999), Removal of carbon and nitrogen within the crushed stones layer of simulated columns and construction proposal of columns and construction proposal of semi-aerobic landfill, J. Korea Society of Waste Management, Vol. 16, No. 6, pp. 604-613.
  25. Zheng, Q. T., Kerry Rowe, R. and Feng, S. J. (2018), Design of vertical landfill gas collection wells considering non-homogeneity with depth, Waste Management, Vol. 82, pp. 26-36. https://doi.org/10.1016/j.wasman.2018.10.012