DOI QR코드

DOI QR Code

Mechanisms of Salt Transport in the Han River Estuary, Gyeonggi Bay

경기만 한강 하구에서의 염 수송 메커니즘

  • Lee, Hye Min (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Kim, Jong Wook (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Choi, Jae Yoon (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Yoon, Byung Il (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Woo, Seung-Buhm (Department of Ocean Sciences, College of Natural Science, Inha University)
  • Received : 2020.11.19
  • Accepted : 2021.01.05
  • Published : 2021.02.27

Abstract

A 3-D hydrodynamic model is applied in the Han River Estuary system, Gyeonggi Bay, to understand the mechanisms of salt transport. The model run is conducted for 245 days (January 20 to September 20, 2020), including dry and wet seasons. The reproducibility of the model about variation of current velocity and salinity is validated by comparing model results with observation data. The salt transport (FS) is calculated for the northern and southern part of Yeomha channel where salt exchange is active. To analyze the mechanisms of salt transport, FS is decomposed into three components, i.e. advective salt transport derived from river flow (QfS0), diffusive salt transport due to lateral and vertical shear velocity (FE), and tidal oscillatory salt transport due to phase lag between current velocity and salinity (FT). According to the monthly average salt transport, the salt in both dry and wet seasons enters through the southern channel of Ganghwa-do by FT. On the other hand, the salt exits through the eastern channel of Yeongjong-do by QfS0. The salt at Han River Estuary enters towards the upper Han River by FT in dry season, whereas that exits to the open sea by QfS0 in wet season. As a result, mechanisms of salt transport in the Han River Estuary depend on the interaction between QfS0 causing transport to open sea and FT causing transport to the upper Han River.

본 연구에서는 해수의 유동에 관한 3차원 수치모델을 사용하여 경기만 한강 하구에서의 염 수송에 대한 메커니즘을 분석하였다. 수치모델의 모의 기간은 갈수기와 홍수기를 포함하는 2020년 1월 20일부터 9월 20일까지 약 245일이며, 모델 결과와 관측 자료의 비교를 통해 해수의 유동 및 염분 변화에 관한 수치모델의 재현성을 입증하였다. 한강 하구에서 염의 교환이 활발하게 이루어지는 염하수로의 북단과 남단 지역에 대해서 염 수송량(FS)을 산출하였다. 염 수송에 대한 발생 기작을 세부적으로 분석하기 위해 FS를 담수 유입에 의한 염의 이류 수송(QfS0), 수평 및 수직적인 유속 차이에 의한 염의 확산 수송(FE), 조석 변동성을 가진 유속과 염분의 위상 차이에 의한 염의 수송(FT)으로 분해하였다. 갈수기와 홍수기의 월 평균 염 수송량에 의하면, 두 기간 모두 외해로부터 한강 하구 지역으로 유입되는 염의 대부분은 FT에 의하여 강화도 남부 수로를 통해 수송된다. 반면에, 한강 하구로부터 외해로 유출되는 염의 대부분은 QfS0에 의하여 영종도 동부 수로를 통해 수송된다. 한강 하구에서 평균적인 염의 수송은 갈수기 동안 FT에 의하여 한강 하구의 상류 방향으로 수송되며, 홍수기 동안 QfS0에 의하여 외해 방향으로 수송된다. 결과적으로, 경기만 한강 하구에서의 염 수송은 외해 방향의 수송을 발생시키는 QfS0와 한강 상류 방향의 수송을 발생시키는 FT의 상호작용에 의하여 결정된다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(2020-0-01389, 인공지능융합연구센터지원(인하대학교)). 이 논문은 2021년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(경기씨그랜트).

References

  1. Bowen, M.M. and Geyer, W.R. (2003). Salt transport and the time-dependent salt balance of a partially stratified estuary. Journal of Geophysical Research: Oceans, 108(C5), 3158. https://doi.org/10.1029/2001JC001231
  2. Chen, C., Beardsley, R.C., Cowles, G., Qi, J., Lai, Z., Gao, G. and Ji, R. (2013). An unstructured grid, finite-volume community ocean model FVCOM user manual. SMAST (p. 404). UMA-SSD Technical Report-13-0701, University of Massachusetts-Dartmouth.
  3. Chen, C., Liu, H. and Beardsley, R.C. (2003). An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1), 159-186. https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
  4. Chen, C., Qi, J., Li, C., Beardsley, R.C., Lin, H., Walker, R. and Gates, K. (2008). Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: An application of FVCOM. Journal of Geophysical Research: Oceans, 113 (C07052).
  5. Choi, N.Y., Yoon, B.I., Kim, J.W., Song, J.I., Lim, E.P. and Woo, S.B. (2012). The relation of cross-sectional residual current and stratification during spring and neap tidal cycle at Seokmo channel, Han River estuary located at South Korea. Journal of Korean Society of Coastal and Ocean Engineers, 24(3), 149-158 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.3.149
  6. Gong, W. and Shen, J. (2011). The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China. Continental Shelf Research, 31(7-8), 769-788. https://doi.org/10.1016/j.csr.2011.01.011
  7. Kim, C.K. and Park, K. (2012). A modeling study of water and salt exchange for a micro-tidal, stratified northern Gulf of Mexico estuary. Journal of Marine Systems, 96, 103-115. https://doi.org/10.1016/j.jmarsys.2012.02.008
  8. Lee, D.H., Yoon, B.I. and Woo, S.B. (2017). The cross-sectional characteristic and spring-neap variation of residual current and net volume transport at the Yeomha channel. Journal of Korean Society of Coastal and Ocean Engineers, 29(5), 217-227 (in Korean). https://doi.org/10.9765/KSCOE.2017.29.5.217
  9. Lee, D.H., Yoon, B.I., Kim, J.W., Gu, B.H. and Woo, S.B. (2012). The cross-sectional mass flux observation at Yeomha channel, Gyeonggi Bay at spring tide during dry and flood season. Journal of Korean Society of Coastal and Ocean Engineers, 24(1), 16-25 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.1.016
  10. Lerczak, J.A., Geyer, W.R. and Chant, R.J. (2006). Mechanisms driving the time-dependent salt flux in a partially stratified estuary. Journal of Physical Oceanography, 36(12), 2296-2311. https://doi.org/10.1175/JPO2959.1
  11. Park, K., Oh, J.H., Kim, H.S. and Im, H.H. (2002). Case study: mass transport mechanism in Kyunggi Bay around Han River mouth, Korea. Journal of Hydraulic Engineering, 128(3), 257-267. https://doi.org/10.1061/(asce)0733-9429(2002)128:3(257)
  12. Wang, T., Geyer, W.R., Engel, P., Jiang, W. and Feng, S. (2015). Mechanisms of tidal oscillatory salt transport in a partially stratified estuary. Journal of Physical Oceanography, 45(11), 2773-2789. https://doi.org/10.1175/JPO-D-15-0031.1
  13. Willmott, C.J. (1981). On the validation of models. Physical Geography, 2(2), 184-194. https://doi.org/10.1080/02723646.1981.10642213
  14. Yoon, B.I. and Woo, S.B. (2012). Relation of freshwater discharge and salinity distribution on tidal variation around the Yeomha channel, Han River Estuary. Journal of Korean Society of Coastal and Ocean Engineers, 24(4), 269-276 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.4.269
  15. Yoon, B.I., Woo, S.B., Kim, J.W. and Song, J.I. (2015). The regional classification of tidal regime using characteristics of astronomical tides, overtides and compound tides in the Han River estuary, Gyeonggi Bay. Journal of Korean Society of Coastal and Ocean Engineers, 27(3), 149-158 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.3.149