DOI QR코드

DOI QR Code

Effects of Polylactic Acid Blending on the Mechanical Properties of Polybutylene Succinate

Polylactic Acid 블렌드가 Polybutylene Succinate의 기계적 물성에 미치는 영향

  • 장순호 (한국섬유개발연구원) ;
  • 서영호 (영남대학교 대학원 유기신소재공학과) ;
  • 임영민 (영남대학교 대학원 유기신소재공학과) ;
  • 남영식 ((주)구스텍) ;
  • 신우택 ((주)구스텍) ;
  • 오태환 (영남대학교 대학원 유기신소재공학과)
  • Received : 2021.01.12
  • Accepted : 2021.02.02
  • Published : 2021.02.28

Abstract

In this study, we investigated the effects of polylactic acid (PLA) blending on the mechanical properties (such as tensile strength, initial modulus, and elongation at break) of polybutylene succinate (PBS) for improving the associated tensile properties without incorporating compatibilizers. The maximum PLA mixing content of 20% by weight was selected by studying the mean squared displacement through molecular dynamics simulation. Subsequently, the PBS/PLA blends were compounded by increasing the PLA content from zero to 20% by weight. The obtained results indicate that the tensile strength of the PBS/PLA blend increases when the PLA blend content is 15% by weight, and the initial modulus increases when the PLA blend content is 20% by weight. Furthermore, at the content of approximately 15% by weight, PLA can be blended without a compatibilizer for improving the tensile strength and initial modulus.

Keywords

Acknowledgement

본 연구는 산업통상자원부 바이오산업핵심기술개발사업(20008490)을 통해 수행되었으며, 이에 감사드립니다.

References

  1. F. M. Windsor, I. Durance, A. A. Horton, R. C. Thompson, C. R. Tyler, and S. J. Ormerod, "A Catchment-scale Perspective of Plastic Pollution", Glob. Change Biol., 2019, 25, 1207-1221. https://doi.org/10.1111/gcb.14572
  2. E. Schmaltz, E. C. Melvin, Z. Diana, E. F. Gunady, D. Rittschof, J. A. Somarelli, J. Virdin, and M. M. Dunphy-Daly, "Plastic Pollution Solutions: Emerging Technologies to Prevent and Collect Marine Plastic Pollution", Environ. Int., 2020, 144, 106067-106083. https://doi.org/10.1016/j.envint.2020.106067
  3. A. L. P. Silva, J. C. Prata, T. R. Walker, A. C. Duarte, W. Ouyang, D. Barcelo, and T. R.-Santos, "Increased Plastic Pollution due to COVID-19 Pandemic: Challenges and Recommendations", Chem. Eng. J., 2021, 405, 126683-126692. https://doi.org/10.1016/j.cej.2020.126683
  4. F. Awaja and D. Pavel, "Recycling of PET", Eur. Polym. J., 2005, 41, 1453-1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005
  5. C. Mihut, D. K. Captain, F. G.-Maria, and M. D. Amiridis, "Review: Recycling of Nylon From Carpet Waste", Polym. Eng. Sci., 2001, 41, 1457-1470. https://doi.org/10.1002/pen.10845
  6. N. E. Suyatma, A. Copinet, L. Tighzert, and V. Coma, "Mechanical and Barrier Properties of Biodegradable Films Made from Chitosan and Poly(lactic acid) Blends", J. Polym. Environ., 2004, 12, 1-6. https://doi.org/10.1023/B:JOOE.0000003121.12800.4e
  7. G. Schmack, D. Jehnichen, R. Vogel, and B. Tandler, "Biodegradable Fibers of Poly(3-hydroxybutyrate) Produced by High-Speed Melt Spinning and Spin Draing", J. Polym. Sci.: Part B: Polym. Phys., 2000, 38, 2841-2850. https://doi.org/10.1002/1099-0488(20001101)38:21<2841::AID-POLB130>3.0.CO;2-#
  8. S. Su, R. Kopitzky, S. Tolga, and S. Kabasci, "Polylactide(PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review", Polymers, 2019, 11, 1193-1213. https://doi.org/10.3390/polym11071193
  9. V. Gigante, M.-B. Coltelli, A. Vannozzi, L. Panariello, A. Fusco, L. Trombi, G. Donnarumma, S. Danti, and A. Lazzeri, "Flat Die Extruded Biocompatible Poly(lactic acid)(PLA)/Poly(butylene succinate)(PBS) Based Films", Polymers, 2019, 11, 1857-1883. https://doi.org/10.3390/polym11111857
  10. J. Jian, Z. Xiangbin, and H. Xianbo, "An Overview on Synthesis, Properties and Applications of Poly(butylene-adipate-co-terephthalate)-PBAT", Adv. Ind. Eng. Polym. Res., 2020, 3, 19-26. https://doi.org/10.1016/j.aiepr.2020.01.001
  11. T. Yokohara and M. Yamaguchi, "Structure and Preperties for Biomass-based Polyester Blends of PLA and PBS", Eur. Polym. J., 2008, 44, 677-685. https://doi.org/10.1016/j.eurpolymj.2008.01.008
  12. A. Bhatia, R. K. Gupta, S. N. Bhattacharya, and H. J. Choi, "Compatibility of Biodegradable Poly(lactic acid) (PLA) and Poly(butylene succinate) (PBS) Blends for Packaging Application", Korea-Australia Rheo. J., 2007, 19, 125-131.
  13. S. Plimpton, "Fast Parallel Algraphenerithms for Short-range Molecular Dynamics", J. Comput. Phys., 1995, 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  14. N. Budtri, S. Aekrum, and W. Lertsiriyothin, "The Compatibility of Polylactides and Polybutylene Succinate in PLA Blends Based on Thermal, Mechanical, and Rheological Properties", Orient. J. Chem., 2017, 33, 2766-2775. https://doi.org/10.13005/ojc/330609
  15. Z. Chu, T. Zhao, L. Li, J. Fan, and Y. Qin, "Characterization of Antimicrobial Poly(lactic acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles", Materials, 2017, 10, 659-672. https://doi.org/10.3390/ma10060659