Restoration of implant-supported fixed dental prosthesis using the automatic abutment superimposition function of the intraoral scanner in partially edentulous patients

부분무치악 환자에서 구강스캐너의 지대주 자동중첩기능을 이용한 임플란트 고정성 보철물 수복 증례

  • Park, Keun-Woo (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Park, Ji-Man (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Lee, Keun-Woo (Department of Prosthodontics, College of Dentistry, Yonsei University)
  • 박근우 (연세대학교 치과대학 치과보철학교실) ;
  • 박지만 (연세대학교 치과대학 치과보철학교실) ;
  • 이근우 (연세대학교 치과대학 치과보철학교실)
  • Received : 2020.08.26
  • Accepted : 2020.10.13
  • Published : 2021.01.29


The digital workflow of optical impressions by the intraoral scanner and CADCAM manufacture of dental prostheses is actively developing. The complex process of traditional impression taking, definite cast fabrication, wax pattern making, and casting has been shortened, and the number of patient's visits can also be reduced. Advances in intraoral scanner technology have increased the precision and accuracy of optical impression, and its indication is progressively widened toward the long span fixed dental prosthesis. This case report describes the long span implant case, and the operator fully utilized digital workflow such as computer-guided implant surgical template and CAD-CAM produced restoration after the digital impression. The provisional restoration and customized abutments were prepared with the optical impression taken on the same day of implant surgery. Moreover, the final prosthesis was fabricated with the digital scan while utilizing the same customized abutment from the provisional restoration. During the data acquisition step, stl data of customized abutments, previously scanned at the time of provisional restoration delivery, were imported and automatically aligned with digital impression data using an 'A.I. abutment matching algorithm' the intraoral scanner software. By using this algorithm, it was possible to obtain the subgingival margin without the gingival retraction or abutment removal. Using the digital intraoral scanner's advanced functions, the operator could shorten the total treatment time. So that both the patient and the clinician could experience convenient and effective treatment, and it was possible to manufacture a prosthesis with predictability.

구강 스캐너를 이용한 디지털 인상과 CAD-CAM (Computer-aided design-computeraided manufacturing) 기술은 점차 발전하고 있다. 전통적인 인상 채득, 작업모형의 제작, 왁스 납형 제작 및 주조의 복잡한 과정이 단축되었으며 환자의 방문 횟수도 줄일 수 있게 되었다. 구강 스캐너 기술의 발전으로 디지털 인상의 정밀도와 정확성이 향상되었으며, 그 적응증은 보다 광범위한 부위의 고정성 치과보철물의 수복으로 점차 확대되어지고 있다. 본 증례 보고에서는 광범위한 부위의 고정성 임플란트 보철물의 수복을 위하여, 컴퓨터로 계획하고 가이드 수술용 템플레이트로 완전히 가이드된 수술을 하고, 즉시/조기 임플란트 보철물을 장착하였으며, 임시 보철물에서 최종 보철물로 전환하는 과정에서 구강스캐너의 지대주중첩 알고리즘을 활용하였다. 임플란트 수술 당일 획득한 구강스캔으로 맞춤형 지대주를 포함한 임시 보철물을 제작하여 활용하였으며, 최종 보철물은 임시 보철물에서의 맞춤형 지대주를 낀 채로 구강스캔하여 제작되었다. 이 과정에서 임시 보철물 장착 전에 미리 스캔해서 라이브러리화한 맞춤형 지대주 데이터를 구강스캐너 소프트웨어 '지대주 자동중첩 기능'으로 최종 디지털 인상에 자동적으로 매칭하였고, 치은연하마진인 부분도 지대주를 탈거하지 않고, 치은압배사 없이 정밀하게 획득할 수 있었다. 구강스캐너와 소프트웨어의 다양한 기술을 응용하여 임플란트 치료 과정을 디지털 워크플로우로 변화시킴으로써, 환자 불편감 및 치료 시간을 단축하였으며, 환자와 술자에게 모두 이롭고 예지성 있는 치료가 가능하였다.


  1. Elani HW, Starr JR, Da Silva JD, Gallucci GO. Trends in dental implant use in the U.S., 1999-2016, and projections to 2026. J Dent Res 2018;97:1424-30.
  2. Alikhasi M, Alsharbaty MHM, Moharrami M. Digital implant impression technique accuracy: A systematic review. Implant Dent 2017;26:929-35.
  3. Schmidt A, Klussmann L, Wostmann B, Schlenz MA. Accuracy of digital and conventional full-arch impressions in patients: An update. J Clin Med 2020;9:688
  4. Gallucci GO, Hamilton A, Zhou W, Buser D, Chen S. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin Oral Implants Res 2018;29:106-34.
  5. Morton D, Gallucci G, Lin WS, Pjetursson B, Polido W, Roehling S, Sailer I, Aghaloo T, Albera H, Bohner L, Braut V, Buser D, Chen S, Dawson A, Eckert S, Gahlert M, Hamilton A, Jaffin R, Jarry C, Karayazgan B, Laine J, Martin W, Rahman L, Schlegel A, Shiota M, Stilwell C, Vorster C, Zembic A, Zhou W. Group 2 ITI consensus report: Prosthodontics and implant dentistry. Clin Oral Implants Res 2018;29:215-23.
  6. Gonzalez-Martin O, Lee E, Weisgold A, Veltri M, Su H. Contour management of implant restorations for optimal emergence profiles: Guidelines for immediate and delayed provisional restorations. Int J Periodont Restor Dent 2020;40:61-70.
  7. Ko KH, Huh YH, Park CJ, Cho LR. Axial displacement in cement-retained prostheses with different implant-abutment connections. Int J Oral Maxillofac Implants 2019;34:1098-104.
  8. Seol HW, Heo SJ, Koak JY, Kim SK, Kim SK. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis. Int J Oral Maxillofac Implants 2015;30:1387-99.
  9. Tarnow DP, Emtiaz S, Classi A. Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1- to 5-year data. Int J Oral Maxillofac Implants 1997;12:319-24.
  10. Tarnow DP, Emtiaz S, Classi A. Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1- to 5-year data. Int J Oral Maxillofac Implants 1997;12:319-24.
  11. Park JM, Kim J, Shim JS. Review of computer-assisted implant surgeries: navigation surgery system vs. computer-guided implant template vs. robot. Implantology 2018;22:50-8.
  12. Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66.