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ANNIHILATING PROPERTY OF ZERO-DIVISORS

Da Woon Jung, Chang Ik Lee, Yang Lee, Sang Bok Nam, Sung Ju Ryu,
Hyo Jin Sung, and Sang Jo Yun

Abstract. We discuss the condition that every nonzero right annihilator

of an element contains a nonzero ideal, as a generalization of the insertion-
of-factors-property. A ring with such condition is called right AP. We

prove that a ring R is right AP if and only if Dn(R) is right AP for every

n ≥ 2, where Dn(R) is the ring of n by n upper triangular matrices over R
whose diagonals are equal. Properties of right AP rings are investigated

in relation to nilradicals, prime factor rings and minimal order.

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. We denote the center, the group of all units,
and the set of all idempotents of R by Z(R), U(R), and I(R), respectively. A
nilpotent element is also said to be a nilpotent for short. We use N(R), J(R),
N∗(R), N∗(R) and W (R) to denote the set of all nilpotents, Jacobson radical,
lower nilradical (i.e., prime radical), upper nilradical (i.e., the sum of all nil
ideals) and the Wedderburn radical (i.e., the sum of all nilpotent ideals) of R,
respectively. It is well-known that

W (R) ⊆ N∗(R) ⊆ N∗(R) ⊆ N(R) and N∗(R) ⊆ J(R).

The polynomial (resp., power series) ring with an indeterminate x over R is
denoted by R[x] (resp., R[[x]]). Z (Zn) denotes the ring of integers (modulo
n). Use Q for the field of rational numbers. Denote the n by n (n ≥ 2) full
(resp., upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)). Write
Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann} and Nn(R) = {(aij) ∈ Tn(R) | aii =
0 for all i}. Use Eij for the matrix with (i, j)-entry 1 and zeros elsewhere. In
denotes the identity matrix in Matn(R). An element u of R is right (resp.,
left) regular if ur = 0 (resp., ru = 0) for r ∈ R implies r = 0. An element is
regular if it is both left and right regular. The monoid of all regular elements
in R is denoted by C(R). The right (resp., left) annihilator of a in R is written
by rR(a) (resp., lR(a)), where a ∈ R.
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1. Introduction

In this section, we discuss a ring property that left zero divisors are annihi-
lated by nonzero ideals. Due to Bell [1], a ring R (possibly without identity) is
called IFP if ab = 0 for a, b ∈ R implies aRb = 0, i.e., R satisfies the insertion-
of-factors-property. Following the literature, a ring (possibly without identity)
is called reduced if it contains no nonzero nilpotents; and a ring (possibly with-
out identity) is called Abelian if every idempotent is central. A ring R is usually
called directly finite (or Dedekind finite) if ab = 1 for a, b ∈ R implies ba = 1. It
is easily proved that reduced rings are IFP, IFP rings are Abelian and Abelian
rings are directly finite. We will freely use the preceding facts. The following
is evident from definition.

Remark 1.1. (1) For a ring R the following conditions are equivalent:
(i) R is IFP;
(ii) If ab = 0 for a, b ∈ R, then aRbR = 0;
(iii) If ab = 0 for a, b ∈ R, then RaRb = 0.

(2) If R is an IFP ring, then W (R) = N∗(R) = N∗(R) = N(R) and R is
Abelian.

The aim of this article is to study the structure of rings R when aI = 0
(resp., Jb = 0) for some nonzero ideals I (resp., J) in place of RbR (resp.,
RaR), in Remark 1.1. For our purpose, we first observe the following example.

Example 1.2. (1) Set

R =

{(
a b
c d

)
∈Mat2(Z16)

∣∣∣ a+ d, b, c ∈ 2Z
}
,

which is a subring of Mat2(Z16). First we see that R is not IFP. For, ( 0 2
0 0 ) ( 0 2

0 0 )
= 0 but ( 0 2

0 0 ) ( 0 0
2 0 ) ( 0 2

0 0 ) = ( 0 8
0 0 ) 6= 0.

Let I =
{(

a b
c d

)
∈Mat2(Z16) | a, b, c, d ∈ 2Z

}
. Then I is an ideal of R such

that I4 = 0. Observing

R/I ∼= {(s, t) ∈ Z2 × Z2 | s+ t ∈ 2Z} = {(0, 0), (1, 1)} ,

we see that W (R) = N∗(R) = N∗(R) = N(R), and that if αβ = 0 for
α, β ∈ R, then α, β ∈ I. Therefore αI3 = 0 and I3β = 0, noting I3 ={(

a b
c d

)
∈Mat2(Z16) | a, b, c, d ∈ 8Z

}
6= 0.

(2) The IFP property does not pass to polynomial rings by [6, Example 2],
but the polynomial rings over IFP rings are able to satisfy a weaker property
as follows.

Let R be an IFP ring and suppose that f(x)g(x) = 0 for 0 6= f(x) =∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x]. Then, by [12, Lemma 3], there exist

nonnegative integers l0, l1, . . . , ln that satisfy, for each k ∈ {0, 1, . . . , n},

f(x)blkk b
lk−1

k−1 · · · b
l0
0 6= 0 and f(x)blk+1

k b
lk−1

k−1 · · · b
l0
0 = 0.
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Next we apply the proof of [12, Theorem 4]. Let y = blnn b
ln−1

n−1 · · · b
l0
0 . Then

y 6= 0. Assume g(x)y 6= 0. Then bsb
ln
n b

ln−1

n−1 · · · b
l0
0 6= 0 for some s ∈ {0, 1, . . . , n},

y′ say. But f(x)bls+1
s b

ls−1

s−1 · · · b
l0
0 = 0 by the argument above, from which we

infer that

f(x)y′ = f(x)bs(b
ln
n · · · b

ls+1

s+1 )blss b
ls−1

s−1 · · · b
l0
0 = 0

by the IFPness of R. Whence we have f(x)Ry′R = 0 by using the IFPness of
R again. Note Ry′R 6= 0.

Following Hwang et al. [8], a ring R is strongly right (resp., left) AB if every
nonzero right (resp., left) annihilator of R contains a nonzero ideal of R. As a
generalization of this, we next consider the ring property below.

A ring R (possibly without identity) will be said to satisfy the right an-
nihilating property (simply, is said to be right AP) provided that if ab = 0
for a, 0 6= b ∈ R, then aI = 0 for some nonzero ideal I of R; equivalently, if
rR(a) 6= 0, then rR(a) contains a nonzero ideal of R. Left AP rings are defined
by symmetry. As we see later, this new concept is not left-right symmetric.
A ring is called AP if it is both right and left AP. IFP rings are clearly AP,
but the converse need not hold by the ring R in Example 1.2(1). We construct
another kind of such ring in Theorem 2.1 to follow. Recall that IFP rings are
Abelian, but right AP rings need not be Abelian as we see in Remark 1.5(1) to
follow.

Lemma 1.3. (1) [10, Proposition 2.8] A ring R is reduced if and only if D3(R)
is IFP.

(2) [11, Example 1.3] Dn(R) is not an IFP ring for n ≥ 4 over any ring R.
(3) The class of IFP rings is closed under subrings and direct products.

Proof. (3) is clear from definition. �

Strongly right AB rings are clearly right AP, however we do not know of any
example of a right AP ring that is not strongly right AB.

Question. If R is a right AP ring, then is R strongly right AB?

The following contains basic properties of right AP rings.

Lemma 1.4. (1) The class of right (left) AP rings is closed under direct prod-
ucts.

(2) If a prime ring R is right (left) AP, then R is a domain.
(3) Right (left) AP rings are directly finite.
(4) A ring R is right (resp., left) AP if and only if rR(a) 6= 0 (resp., lR(a) 6=

0) for a ∈ R implies aRc = 0 (resp., cRa = 0) for some 0 6= c ∈ R.

Proof. (1) Let Ri be rings for i ∈ I and R =
∏

i∈I Ri be the direct product of
Ri’s. Suppose that every Ri is right AP and (ai)(bi) = 0 for (ai), 0 6= (bi) ∈ R.
Let I0 ⊆ I such that bj 6= 0 for all j ∈ I0. Then since ajbj = 0 for all j ∈ I0,
ajKj = 0 for some nonzero ideal Kj of Rj . Write L =

∏
i∈I Li where Li = Ki
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for i ∈ I0 and Li = 0 for i ∈ I\I0 (if any). Then L is a nonzero ideal of R such
that (ai)L = 0. Thus R is right AP.

(2) Let R be a prime right AP ring. Suppose ab = 0 for a, b ∈ R. Assume
a, b 6= 0. Then since R is right AP, aI = 0 for some nonzero ideal I of R. Since
R is prime and I 6= 0, aRI = aI = 0 implies a = 0, contradicting a 6= 0. Thus
R is a domain. The left case is similarly proved

(3) Let R be a right AP ring and suppose that ab = 1 for a, b ∈ R. We apply
the proof of [8, Proposition 3.15]. Assume on the contrary that ba 6= 1. Then
since R is right AP and ba(1− ba) = 0 with 1− ba 6= 0, we see that baRc = 0
for some 0 6= c ∈ R. This yields c = a(babc) ∈ a(baRc) = 0, a contradiction.
Thus ba = 1.

(4) This is evident from definition.
The proofs of the left cases of the results above are similar. �

By Lemma 1.4(2), we can obtain the following results. Let R be a ring such
that N∗(R) = N(R), i.e., R/N∗(R) is reduced (e.g., IFP rings). Then every
prime factor ring of R is a domain. As a corollary of Lemma 1.4(3), we can
obtain that strongly one-sided AB rings are directly finite [8, Proposition 3.15].

The following elaborates upon Lemma 1.4. Especially, the ring below shows
that the AP property is not left-right symmetric and that right AP rings need
not be Abelian.

Remark 1.5. (1) There exist right AP rings which are neither Abelian nor left
AP. One can see such a ring in [8, Example 2.5(4)], but we provide a ring of
other kind. Let A = Z2〈a, b〉 be the free algebra generated by noncommuting
indeterminates a, b over Z2. Consider the ideal G of A generated by

b2 − b, a2 and abab.

Next set R = A/G. Identity elements in A with their images in R for simplicity.
Then since a2 = 0 and abab = 0, we see (RaR)3 = 0. Observing R/(RaR) ∼=
Z2 + Z2b = {0, 1, b, 1 + b} ∼= Z2 × Z2, we see W (R) = RaR = N(R). Moreover
b2 = b and ab 6= ba, so that R is not Abelian.

Every element of R is expressed by

h0 + h1b+ h2a+ f1b+ f2a,

where hi ∈ Z2, fi ∈ R such that every term of fi is of degree ≥ 1, every term
of f1 contains a when nonzero, and every term of f2 contains b when nonzero.

Note that h2a + f1b + f2a ∈ N(R) = RaR in the preceding expression of
elements, and hence 1 + h2a+ f1b+ f2a ∈ U(R). However

(1 + b+ h2a+ f1b+ f2a)R(baba)R = 0,

observing R(baba)R = {0, baba} 6= 0. Furthermore, we have

(b+ h2a+ f1b+ f2a)R((1 + b)aba)R = 0,

observing R((1 + b)aba)R = {0, (1 + b)aba} 6= 0.
Therefore R is a right AP ring that is not Abelian.
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We claim that R is not left AP. Assume that fR(1 + b) = 0 for some
f = h0 + h1b + h2a + f1b + f2a ∈ R. Then h0 = 0 and h2 = 0 through a
simple computation, entailing f = h1b + f1b + f2a. From 0 = f(1 + b) =
f2a(1 + b) = f2a+ f2ab, we obtain f2a = 0, entailing f = h1b+ f1b. Note that
f1 = k1ab+ k2bab with ki ∈ Z2. So, from

0 = fa(1 + b) = (h1b+ k1ab+ k2bab)a(1 + b)

= h1ba+ h1bab+ k1aba+ k1abab+ k2baba+ k2babab

= h1ba+ h1bab+ k1aba+ k2baba,

we decide that h1 = 0, k1 = 0, k2 = 0. This implies f = 0. Hence R is not left
AP because b(1 + b) = 0.

Next letting G′ be the ideal of A that is generated by

b2 − b, a2 and baba,

we can prove that the factor ring A/G′ is left AP but not right AP through a
similar computation. Clearly, A/G′ is also non-Abelian.

(2) From Lemma 1.4(2), we infer that for a prime ring R, R is right (left)
AP if and only if R is a domain if and only if R is reduced if and only if R is
IFP.

(3) Prime factor rings of IFP rings need not be right (left) AP. To see that,
we apply the argument in [5, Example 3]. Let p be an odd prime and R0 be the
localization of Z at the prime ideal pZ of Z. Set R be the quaternions over R0.
Then R is clearly a domain (hence IFP), but R/pR is isomorphic to Mat2(Zp)
by the argument in [4, Exercise 2A]. Mat2(Zp) is neither right nor left AP by
Lemma 1.4(2). Note that pR is a maximal ideal of R. Consequently, the class
of right AP rings is not closed under prime factor rings.

(4) There exist many directly finite rings which are neither right nor left AP.
For example, Tn(R) and Matn(R) over any finite ring R for n ≥ 2 (refer to
Example 2.2 to follow), and right Noetherian prime rings which are not domains
(refer to Lemma 1.4(2) and [9, Theorem 1]). Here we provide another kind of
such ring. Let A = Z2〈a, b〉 be the free algebra generated by noncommuting
indeterminates a, b over Z2. Consider the ideal H of A generated by

b2 − b, a− ba, a2 and ab.

Next set R = A/H. In the argument below, we identity elements in A with
their images in R for simplicity. Since a2 = 0 and aba = 0, we see (RaR)2 = 0.
Observing R/(RaR) ∼= Z2 + Z2b ∼= Z2 × Z2, we see W (R) = RaR = N(R).

Every element of R is expressed by

h0 + h1b+ h2a,

where hi ∈ Z2. Note b(1 + b) = 0 and suppose that bI = 0 for some nonzero
ideal I of R. Let 0 6= f = h0 + h1b + h2a ∈ I. Then, from bf = 0, we
get (h0 + h1)b + h2a = 0, hence h0 + h1 = h2 = 0, so that f = h0 + h1b.
But f 6= 0, hence h0 = h1 = 1, that is f = 1 + b, from which we infer
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0 6= a = a + ab = af = b(af) ∈ bI = 0, a contradiction. Thus R is not right
AP.

Next suppose that J(1 + b) = 0 for some nonzero ideal J of R. Let 0 6= g =
k0 + k1b+ k2a ∈ J . Then, from g(1 + b) = 0, we get k0 + k0b+ k2a = 0, hence
k0 = k2 = 0. But g 6= 0, hence k1 = 1, so that g = b, from which we infer that
0 6= a = ba(1 + b) = ga(1 + b) ∈ J(1 + b) = 0, a contradiction. Thus R is not
left AP.

However R is clearly a finite ring, hence directly finite.
(5) There exists an AP ring without identity that is not Abelian. Let A =

Z2〈a, b〉 be the free algebra generated by noncommuting indeterminates a, b
over Z2. Consider the ideal K of A generated by

b2 − b, a− ab, a2 and ba.

Next set R = A/K. In the argument below, we identity elements in A with
their images in R for simplicity. Through a similar argument to one of (3), we
see that (RaR)2 = 0, R/(RaR) ∼= Z2 × Z2, and W (R) = RaR = N(R). Next
set

S = {f ∈ R | the constant term of f is zero}.

Then every element of S is expressed by h1b + h2a, where hi ∈ Z2. Suppose
that fg = 0 for 0 6= f = h1b+ h2a, g = k1b+ k2a ∈ S. Then h1k1 = 0, so that
h1 = 0 or k1 = 0.

Let h1 = 1. Then k1 = 0, so that f = b+ k2a and g = a. Letting J be the
ideal of R generated by a, we have fJ = (b+ k2a)J = 0.

Let h1 = 0. Then h2 = 1, so that f = a and g = a. We also have
fJ = 0. Thus R is right AP, but non-Abelian as can be seen by b ∈ I(R) and
ab = a 6= 0 = ba.

Moreover R is left AP. For, Ja = 0 in any case of the preceding argument,
whence R is left AP.

(6) The class of right (left) AP rings is not closed under direct limits as
the ring below shows, which is compared with Lemma 1.4(1). There exist a
chain of AP rings whose direct limit is neither right nor left AP. We apply
the construction of [7, Example 1.2]. Let A be a domain and consider the
rings D2n(A) for n = 1, 2, . . .. Define a map σ : D2n(A) → D2n+1(A) by
M 7→ ( M 0

0 M ). Then D2n(A) can be considered as a subring of D2n+1(A) via
σ (i.e., M = σ(M) for M ∈ D2n(A)). Set R be the direct limit of the direct
system (Dn, σij), where σij = σj−i. Then R = ∪∞i=1D2n(A). Every D2n(A) is
AP by Theorem 2.1, and R can be shown to be a prime ring by the proof of
[7, Proposition 1.3]. So if R is right or left AP, then R is a domain by Lemma
1.4(2), contrary to R being not a domain. Therefore R is neither right nor left
AP.

The class of right AP rings is not closed under subrings by [8, Example 3.2].
But the right AP property passes to the following kind of subring.
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Proposition 1.6. Let R be a right AP ring and e ∈ I(R) be such that eIe 6= 0
for any nonzero ideal I of R. Then eRe is right AP.

Proof. Let ab = 0 for 0 6= a, b ∈ eRe. Since R is right AP, there is a nonzero
ideal I of R such that aI = 0. Then eIe 6= 0 by hypothesis, and aI = 0 implies
aeIe = eaeIe = 0. But eIe is an ideal of eRe, hence eRe is right AP. �

The preceding proposition is similar to [8, Proposition 4.1]. We next consider
some properties of semiprime right AP rings. Recall that an ideal I of a ring
R is called essential if I ∩ J 6= 0 for any nonzero ideal J of R.

Proposition 1.7. (1) Let R be a semiprime right AP ring and a2 = 0 for
a ∈ R. Then we have the following.

(i) rR(a) does not contain any nonzero ideal that is contained in RaR.
(ii) RaR is a non-essential ideal of R.

(2) Let R be a semiprime right AP ring and a ∈ R. If RaR is an essential
ideal of R, then a /∈ N(R).

Proof. (1) If a = 0, then we are done. So suppose 0 6= a ∈ R. Since R is
right AP, rR(a) contains a nonzero ideal I of R. Then aI = 0, i.e., I ⊆ rR(a).
Consider RaR ∩ I. Since R is semiprime, (RaR ∩ I)2 ⊆ RaRI = 0 implies
RaR ∩ I = 0. This completes the proof of (i). The preceding argument also
proves (ii).

(2) is obtained from (1)-(ii). �

Recall that there exists a (right) AP ring such that some prime factor ring
of it is neither right nor left AP (see Remark 1.5(3)).

Proposition 1.8. (1) Let R be a right AP ring. If R/P is right AP for any
minimal prime ideal P of R, then R/N∗(R) is a reduced ring.

(2) Let R be a semiprime right AP ring. If R/P is right AP for any minimal
prime ideal P of R, then R is a reduced ring.

Proof. (1) Suppose that R/P is right AP for any minimal prime ideal P of R.
Then R/P is a domain by Lemma 1.4(2). Thus R/N∗(R) is a subdirect product
of domains, so that R/N∗(R) is reduced. (2) is an immediate consequence of
(1). �

2. Right AP rings

In this section we investigate several kinds of ring extensions which preserve
the right AP property.

Considering the rings below, we can see that there exist many non-IFP right
AP rings.

Theorem 2.1. (1) A ring R is right AP if and only if Dn(R) is right AP for
every n ≥ 2.

(2) A ring R is left AP if and only if Dn(R) is left AP for every n ≥ 2.
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Proof. Write D = Dn(R) and let n ≥ 2. (1) Let R be a right AP ring. Suppose
that AB = 0 for A = (aij), B = (bij) ∈ Dn(R)\{0}. Then aiibii = 0.

If A ∈ Nn(R), then A(DE1n) = 0.
Let A /∈ Nn(R) (i.e., aii 6= 0).
Assume bii 6= 0. Then since R is right AP and aiibii = 0, we see that aiiI = 0

for some nonzero ideal I of R. So we have

AD[IE1n] = [aiiRI]E1n = [aiiI]E1n = 0,

noting that D[IE1n] = IE1n is a nonzero ideal of D.
Assume bii = 0. Let t be largest in {2, . . . , n} such that the t-th column of

(bij) is nonzero. Next let s be largest in {1, . . . , n − 1} such that bst 6= 0. It
then follows from (aij)(bij) = 0 that

0 = assbst + as(s+1)b(s+1)t + · · ·+ as(n−1)b(n−1)t + asnbnt = assbst,

noting aii = ass.
Since R is right AP and bst 6= 0, aiiJ = 0 for some nonzero ideal J of R. So

we have
AD[JE1n] = [aiiRJ ]E1n = [aiiJ ]E1n = 0,

noting that D[JE1n] = JE1n is a nonzero ideal of D.
Therefore Dn(R) is right AP.
Conversely let D be right AP and suppose that ab = 0 for a, 0 6= b ∈ R.

Consider two matrices α = aIn and β = bIn in D. Then αβ = 0 with β 6= 0.
Since D is right AP, α(DγD) = 0 for some 0 6= γ = (cij) ∈ D. Say cpq 6= 0.
Then

cpqE1n = E1p(cij)Eqn ∈ DγD,
so that DγD contains (RcpqR)E1n which is a nonzero ideal of D. Moreover

α[(RcpqR)E1n] ⊆ α(DγD) = 0,

whence a(RcpqR) = 0. Therefore R is right AP because RcpqR is a nonzero
ideal of R.

(2) The proof is similar to (1), but contains several different parts; hence we
write it for completeness. Let R be a left AP ring. Suppose that AB = 0 for
A = (aij) 6= 0, B = (bij) ∈ Dn(R). Then aiibii = 0.

If B ∈ Nn(R), then (DE1n)B = 0.
Let B /∈ Nn(R) (i.e., bii 6= 0).
Assume aii 6= 0. Then since R is left AP and aiibii = 0, we see that Hbii = 0

for some nonzero ideal H of R. So we have

[HE1n]DB = [HRbii]E1n = [Hbii]E1n = 0,

noting that [HE1n]D = HE1n is a nonzero ideal of D.
Assume aii = 0. Let p be smallest in {1, . . . , n − 1} such that the p-th row

of (aij) is nonzero. Next let q be smallest in {2, . . . , n} such that apq 6= 0. It
then follows from (aij)(bij) = 0 that

0 = appbpq + ap(p+1)b(p+1)q + · · ·+ ap(q−1)b(q−1)q + apqbqq = apqbqq,
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noting bii = bqq.
Since R is left AP and apq 6= 0, Kbii = 0 for some nonzero ideal K of R. So

we have

[KE1n]DB = [KRbii]E1n = [Kbii]E1n = 0,

noting that [KE1n]D = KE1n is a nonzero ideal of D.
Therefore Dn(R) is left AP.
Conversely let D be left AP and suppose that ab = 0 for a 6= 0, b ∈ R.

Consider two matrices α = aIn and β = bIn in D. Then αβ = 0 with α 6= 0.
Since D is left AP, (DδD)β = 0 for some 0 6= δ = (dij) ∈ D. Say duv 6= 0.
Then

duvE1n = E1u(dij)Evn ∈ DδD,
so that DδD contains (RduvR)E1n which is a nonzero ideal of D. Moreover

[(RduvR)E1n]β ⊆ (DδD)β = 0,

whence (RduvR)b = 0. Therefore R is left AP because RduvR is a nonzero
ideal of R. �

Dn(R) is not IFP for all n ≥ 4 over any ring R, by Lemma 1.3(2). But if
R is right AP (e.g., R is IFP), then Dn(R) is right AP by Theorem 2.1(1). As
another example, consider D3(R) over a non-reduced IFP ring R. Then D3(R)
is not IFP by Lemma 1.3(1) but right AP by Theorem 2.1(1).

Considering Theorem 2.1(1), one may ask whether Tn(R) (Matn(R)) is right
(resp., left) AP over right (resp., left) AP ring R. However the answer is
negative by the example below. Compare this with [8, Example 2.3(1)].

Example 2.2. Let R be any ring and consider T = Tn(R) for n ≥ 2. Take
α = E11 and β = E22 in T . Then αβ = 0. Assuming that T is right AP,
αTγT = 0 for some 0 6= γ = (cij) ∈ T . Say cpq 6= 0. Then TγT contains
E1p(cij)Eqn = cpqE1n. This yields a contradiction that

0 6= cpqE1n = E11E1p(cij)Eqn ∈ αTγT = 0.

Thus Tn(R) cannot be right AP. Similarly it is shown that Tn(R) cannot be left
AP over any ring R. The same argument is applicable to show that Matn(R)
for n ≥ 2 is neither right nor left AP over any ring R.

Next we observe noncommutative right AP rings of minimal order. The
Galois field of order pn is denoted by GF (pn), where p is a prime and n ≥ 1.

Lemma 2.3. (1) [3, Proposition] Let R be a finite noncommutative ring. If
the order of R is p3, with p a prime, then R is isomorphic to T2(GF (p)).

(2) [3, Theorem] Let R be a finite ring of order m. If m has a cube-free
factorization, then R is a commutative ring.

Every noncommutative ring of minimal order is isomorphic to the T2(Z2) by
Lemma 2.3. So D3(Z2) is a noncommutative right AP ring of minimal order
by Theorem 2.1 and Example 2.2.
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Proposition 2.4. (1) Let R be a noncommutative finite ring. If R is right
AP, then any nonzero right annihilator in R contains a nonzero ideal of R.

(2) Let R be a noncommutative right AP ring of minimal order. Then R
is isomorphic to Ak for some k ∈ {1, 2, 3, 4, 5, 6}, where Ai is the ring Bi in
[8, Example 2.5(3)] for i = 1, 2, 3, A4 is D3(Z2), A5 is the ring R in [8, Example
2.5(2)], and A6 = C1 with pn = 2 in [8, Example 2.5(4)].

Proof. (1) Since R is finite, J(R) is nilpotent, so that J(R) = W (R). Further,
R/J(R) is isomorphic to a finite direct product of Mat2(Z2)’s (if any) and
Z2’s because R is of minimal order. Assume J(R) = 0. Then R is a finite
direct product of Z2’s by help of Example 2.2 since R is right AP, so that R
is commutative, contradicting the hypothesis. So J(R) 6= 0, and especially
R is a local ring. Since R is finite, there exists k ≥ 2 such that J(R)k = 0
and J(R)k−1 6= 0. Suppose that rR(X) is nonzero for some X ⊆ R. Then
X ⊆ J(R), hence XJ(R)k−1 = 0.

(2) can be proved by (1), Lemma 2.3 and [8, Theorem 2.6(1)]. �

Let R be an algebra (possibly without identity) over a commutative ring
S. Following Dorroh [2], the Dorroh extension of R by S is the Abelian group
R× S with multiplication given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2),
where ri ∈ R and si ∈ S.

Proposition 2.5. Let R be a nil algebra over a field K. If R is right AP, then
so is the Dorroh extension of R by K.

Proof. Let D be the Dorroh extension of R by K and suppose that αβ = 0
for 0 6= α, β ∈ D. Then α = (a, 0), β = (b, 0) for some 0 6= a, b ∈ R because
(r, u) ∈ U(D) when u 6= 0. So ab = 0. Since R is right AP and b 6= 0, there
exists a nonzero ideal I of R such that aI = 0. Set J = {(c, 0) | c ∈ I}. Then
J is a nonzero ideal of D such that αJ = (a, 0)(I, 0) = (aI, 0) = 0. Thus D is
right AP. �

One may ask whether nil rings are right (left) AP. However the answer is
negative as follows.

Example 2.6. We apply the construction of [7, Example 1.2]. Let A be any
ring and consider the rings T2n(A) for n = 1, 2, . . .. Define a map σ : T2n(A)→
T2n+1(A) by M 7→ ( M 0

0 M ). Then T2n(A) can be considered as a subring of
T2n+1(A) via σ (i.e., M = σ(M) for M ∈ T2n(A)). Set R0 be the direct limit
of the direct system (Dn, σij), where σij = σj−i. Then R0 = ∪∞i=1T2n(A). Set

R = {(aij) ∈ R0 | aii = 0 for all i}.
Then R is a nil ring.

Let α = E12 = β ∈ R. Then αβ = 0. Assume that R is right AP. Then
αRδR = 0 for some 0 6= δ = (dij) ∈ N2n(A) ⊂ R. Say dpq 6= 0.

Set s be smallest such that the s-th row of δ contains a nonzero entry,
and t be smallest such that dst 6= 0 in the s-th row. Note that s < t and
(s+ 2k, t+ 2k)-entry of δ in N2n+1(A) is also dst for k = n, n+ 1, n+ 2, . . ..
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Then RδR contains E2,s+2k(dij)Et+2k,2k+1 = dstE2,2k+1 . This yields a con-
tradiction that

0 6= dstE1,2k+1 = E12(E2,s+2k(dij)Et+2k,2k+1) ∈ αRδR = 0.

Therefore R is not right AP. R can be shown to be not left AP by a similar
method.

By the result below, we can always construct right AP ring extensions from
given any right AP rings.

Proposition 2.7. Let R be a ring and M be a multiplicatively closed subset of
R that consists of central non-zero-divisors. Then R is right AP if and only if
M−1R is right AP.

Proof. The proof is almost similar to one of [8, Proposition 4.7], however we
write it for completeness. Let R be right AP and suppose that αβ = 0 for
0 6= α = au−1, β = bv−1 ∈ RM−1. Then ab = 0. Since R is right AP and
b 6= 0, there exists a nonzero ideal I of R such that aI = 0. Set J = IM−1.
Then J is evidently a nonzero ideal of RM−1. Moreover αJ = au−1IM−1 =
u−1M−1aI = 0. Thus RM−1 is right AP.

Conversely suppose that RM−1 is right AP and let ab = 0 for 0 6= a, b ∈ R.
Since RM−1 is right AP, there exists a nonzero ideal K of RM−1 such that
aK = 0. Take 0 6= cw−1 ∈ K. Then aRcw−1R ⊆ aK = 0, so that aRcR = 0.
But c 6= 0, hence R is right AP. �

This result is also valid for strongly right AB rings as we see in [8, Proposition
4.7]. The Laurent polynomial ring, with an indeterminate x over a ring R,
consists of all formal sums

∑n
i=kmix

i with usual addition and multiplication,
where mi ∈ R and k, n are (possibly negative) integers. This is denoted by
R[x;x−1]. Letting M = {xi | i ≥ 1}, we have R[x]M−1 = R[x;x−1]. Thus, by
Proposition 2.7, R[x] is right AP if and only if R[x;x−1] is right AP.
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