DOI QR코드

DOI QR Code

Antagonistic Activity of Bacteria Isolated from Apple in Different Fruit Development Stages against Blue Mold Caused by Penicillium expansum

  • Received : 2020.07.14
  • Accepted : 2020.12.22
  • Published : 2021.02.01

Abstract

Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/㎠). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce anti-fungal lipopeptides from iturin and fengycin families.

Keywords

References

  1. Anderson, M. J. 2008. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26:32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
  2. Arrebola, E., Sivakumar, D., Bacigalupo, R. and Korsten, L. 2010. Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Prot. 29:369-377. https://doi.org/10.1016/j.cropro.2009.08.001
  3. Avalos, S. R., Martinez-Peniche, R. A., Soto-Munoz, L. and Chavaro-Ortiz, M. S. 2012. Modes of action of four strains of antagonistic yeasts against Penicillium expansum LINK in apple. Rev. Chapingo. Ser. Hortic. 18:227-238. https://doi.org/10.5154/r.rchsh.2010.08.030
  4. Barad, S., Espeso, E. A., Sherman, A. and Prusky, D. 2016. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum. Mol. Plant Pathol. 17:727-740. https://doi.org/10.1111/mpp.12327
  5. Bevardi, M., Frece, J., Mesarek, D., Bosnir, J., Mrvcic, J., Delas, F. and Markov, K. 2013. Antifungal and antipatulin activity of Gluconobacter oxydans isolated from apple surface. Arh. Hig. Rada. Toksikol. 64:279-284. https://doi.org/10.2478/10004-1254-64-2013-2308
  6. Bever, J. D., Platt, T. G. and Morton, E. R. 2012. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66:265-283. https://doi.org/10.1146/annurev-micro-092611-150107
  7. Burch, A. Y., Do, P. T., Sbodio, A., Suslow, T. V. and Lindow, S. E. 2016. High-level culturability of epiphytic bacteria and frequency of biosurfactant producers on leaves. Appl. Environ. Microbiol. 82:5997-6009. https://doi.org/10.1128/AEM.01751-16
  8. Calvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D. and Sanz de Tosetti, M. I. 2007. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food Microbiol. 113:251-257. https://doi.org/10.1016/j.ijfoodmicro.2006.07.003
  9. Calvo, H., Marco, P., Blanco, D., Oria, R. and Venturini, M. E. 2017. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol. 63:101-110. https://doi.org/10.1016/j.fm.2016.11.004
  10. Campos-Martinez, A., Velazquez-del Valle, M. G., Flores-Moctezuma, H. E., Suarez-Rodriguez, R., Ramirez-Trujillo, J. A. and Hernandez-Lauzardo, A. N. 2016. Antagonistic yeasts with potential to control Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. and Colletotrichum acutatum J.H. Simmonds on avocado fruits. Crop Prot. 89:101-104. https://doi.org/10.1016/j.cropro.2016.07.001
  11. Chen, X., Zhang, Y., Fu, X., Li, Y. and Wang, Q. 2016. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol. Technol. 115:113-121. https://doi.org/10.1016/j.postharvbio.2015.12.021
  12. Demoz, B. T. and Korsten, L. 2006. Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol. Control 37:68-74. https://doi.org/10.1016/j.biocontrol.2005.11.010
  13. de Oliveira Nascimento, I., Rodrigues, A. A. C., Moraes, F. H., de Sousa, F. A., Corsi, M. C. F. and de Moraes Catarino, A. 2016. Isolation, identification and in vitro evaluation of Bacillus spp. in control of Magnaporthe oryzae comparing evaluation methods. Afr. J. Agric. Res. 11:1743-1749. https://doi.org/10.5897/AJAR2016.10931
  14. Droby, S. and Wisniewski, M. 2018. The fruit microbiome: a new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol. Technol. 140:107-112. https://doi.org/10.1016/j.postharvbio.2018.03.004
  15. Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K. and Vishwakarma, R. K. 2019. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit. Rev. Food Sci. Nutr. 59:1498-1513. https://doi.org/10.1080/10408398.2017.1417235
  16. Fediala Abd El-Gleel Mosa, W., Sas Paszt, L., Frac, M., Trzcinski, P., Treder, W. and Klamkowski, K. 2018. The role of biofertilizers in improving vegetative growth, yield and fruit quality of apple. Hortic. Sci. (Prague) 45:173-180. https://doi.org/10.17221/101/2017-HORTSCI
  17. Fourie, J. F. and Holz, G. 1998. Effects of fruit and pollen exudates on growth of Botrytis cinerea and infection of plum and nectarine fruit. Plant Dis. 82:165-170. https://doi.org/10.1094/PDIS.1998.82.2.165
  18. Fredriksson, N. J., Hermansson, M. and Wilen, B. M. 2013. The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE 8:e76431. https://doi.org/10.1371/journal.pone.0076431
  19. Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M. and Sarniguet, A. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75:583-609. https://doi.org/10.1128/MMBR.00020-11
  20. Hanif, A., Zhang, F., Li, P., Li, C., Xu, Y., Zubair, M., Zhang, M., Jia, D., Zhao, X., Liang, J., Majid, T., Yan, J., Farzand, A., Wu, H., Gu, Q. and Gao, X. 2019. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins 11:295. https://doi.org/10.3390/toxins11050295
  21. Jackson, C. R. and Denney, W. C. 2011. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora). Microb. Ecol. 61:113-122. https://doi.org/10.1007/s00248-010-9742-2
  22. Janaki, T., Nayak, B. K. and Ganesan, T. 2016. Antifungal activity of soil actinomycetes from the mangrove Avicennia marina. J. Med. Plants Stud. 4:05-08.
  23. Janisiewicz, W. 1996. Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology 86:473-479. https://doi.org/10.1094/Phyto-86-473
  24. Janisiewicz, W. J., Jurick, W. M. 2nd, Peter, K. A., Kurtzman, C. P. and Buyer, J. S. 2014. Yeasts associated with plums and their potential for controlling brown rot after harvest. Yeast 31:207-218. https://doi.org/10.1002/yea.3009
  25. Janssen, B. J., Thodey, K., Schaffer, R. J., Alba, R., Balakrishnan, L., Bishop, R., Bowen, J. H., Crowhurst, R. N., Gleave, A. P., Ledger, S., McArtney, S., Pichler, F. B., Snowden, K. C. and Ward, S. 2008. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 8:16. https://doi.org/10.1186/1471-2229-8-16
  26. Juhnevica, K., Skudra, G. and Skudra, L. 2011. Evaluation of microbiological contamination of apple fruit stored in a modified atmosphere. Environ. Exp. Biol. 9:53-59.
  27. Kasfi, K., Taheri, P., Jafarpour, B. and Tarighi, S. 2018. Characterization of antagonistic microorganisms against Aspergillus spp. from grapevine leaf and berry surfaces. J. Plant Pathol. 100:179-190. https://doi.org/10.1007/s42161-018-0042-x
  28. Kaur, A., Sood, A., Kaur, S. and Bhowate, P. 2017. Bacterial population associated with fruits and vegetables and its treatment using antimicrobial rinsing. Int. J. Curr. Microbiol. Appl. Sci. 6:2099-2107.
  29. Kindt, R. and Code, R. 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, Nairobi, Kenya. 203 pp.
  30. Konarska, A. 2014. Morphological, histological and ultrastructural changes in fruit epidermis of apple Malus domestica cv. Ligol (Rosaceae) at fruit set, maturity and storage. Acta Biol. Crac. Ser. Bot. 56:35-48.
  31. Krzyzanowska, D. M., Maciag, T., Siwinska, J., Krychowiak, M., Jafra, S. and Czajkowski, R. 2019. Compatible mixture of bacterial antagonists developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. Plant Dis. 103:1374-1382. https://doi.org/10.1094/PDIS-10-18-1866-RE
  32. Leff, J. W. and Fierer, N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS ONE 8:e59310. https://doi.org/10.1371/journal.pone.0059310
  33. Leibinger, W., Breuker, B., Hahn, M. and Mendgen, K. 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 87:1103-1110. https://doi.org/10.1094/PHYTO.1997.87.11.1103
  34. Li, H. X. and Xiao, C. L. 2008. Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple. Phytopathology 98:427-435. https://doi.org/10.1094/PHYTO-98-4-0427
  35. Li, Y., Han, L.-R., Zhang, Y., Fu, X., Chen, X., Zhang, L., Mei, R. and Wang, Q. 2013. Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. Plant Pathol. J. 29:168-173. https://doi.org/10.5423/PPJ.SI.08.2012.0125
  36. Lopes, P. R. C., Oliveira, I. V. D. M., Silva, R. R. S. D. and Cavalcante, Í. H. L. 2013. Growing Princesa apples under semiarid conditions in northeastern Brazil. Acta Sci. Agron. 35:93-99.
  37. Lorenzini, M. and Zapparoli, G. 2020. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi. Int. J. Food Microbiol. 319:108505. https://doi.org/10.1016/j.ijfoodmicro.2019.108505
  38. Luziatelli, F., Ficca, A. G., Colla, G., Baldassarre Svecova, E. and Ruzzi, M. 2019. Foliar application of vegetal-derived bioactive compounds stihhajeo mulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 10:60. https://doi.org/10.3389/fpls.2019.00060
  39. Malfanova, N., Kamilova, F., Validov, S., Shcherbakov, A., Chebotar, V., Tikhonovich, I. and Lugtenberg, B. 2011. Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb. Biotechnol. 4:523-532. https://doi.org/10.1111/j.1751-7915.2011.00253.x
  40. Methe, B. A., Hiltbrand, D., Roach, J., Xu, W., Gordon, S. G., Goodner, B. W. and Stapleton, A. E. 2020. Functional gene categories differentiate maize leaf drought-related microbial epiphytic communities. PLoS ONE 15:e0237493. https://doi.org/10.1371/journal.pone.0237493
  41. Nongkhlaw, F. M. and Joshi, S. R. 2015. Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J. Infect. Dev. Ctries. 9: 954-961. https://doi.org/10.3855/jidc.4967
  42. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. and Wagner, H. 2015. vegan: community ecology package: ordination methods, diversity analysis and other functions for community and vegetation ecologists. R package, version 2.5-6. URL https://cran.r-project.org/src/contrib/Archive/vegan/ [14 July 2020].
  43. R Core Team. 2013. R: A language and environment for statistical computing. URL http://www.R-project.org/ [14 July 2020].
  44. Rodriguez-Chavez, J. L., Juarez-Campusano, Y. S., Delgado, G. and Pacheco Aguilar, J. R. 2019. Identification of lipopeptides from Bacillus strain Q11 with ability to inhibit the germination of Penicillium expansum, the etiological agent of postharvest blue mold disease. Postharvest Biol. Technol. 155:72-79. https://doi.org/10.1016/j.postharvbio.2019.05.011
  45. Rudrappa, T., Czymmek, K. J., Pare, P. W. and Bais, H. P. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148:1547-1556. https://doi.org/10.1104/pp.108.127613
  46. Rungjindamai, N. 2016. Isolation and evaluation of biocontrol agents in controlling anthracnose disease of mango in Thailand. J. Plant Prot. Res. 56:306-311. https://doi.org/10.1515/jppr-2016-0034
  47. Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2008. Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol. Technol. 49:121-128. https://doi.org/10.1016/j.postharvbio.2007.11.006
  48. Sartori, M., Nesci, A., Formento, A. and Etcheverry, M. 2015. Selection of potential biological control of Exserohilum turcicum with epiphytic microorganisms from maize. Rev. Argent. Microbiol. 47:62-71. https://doi.org/10.1016/j.ram.2015.01.002
  49. Sarwar, A., Brader, G., Corretto, E., Aleti, G., Ullah, M. A., Sessitsch, A. and Hafeez, F. Y. 2018. Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS ONE 13:e0198107. https://doi.org/10.1371/journal.pone.0198107
  50. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  51. Shade, A., Jacques, M. A. and Barret, M. 2017. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37:15-22. https://doi.org/10.1016/j.mib.2017.03.010
  52. Sharifazizi, M., Harighi, B. and Sadeghi, A. 2017. Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biol. Control 104:28-34. https://doi.org/10.1016/j.biocontrol.2016.10.007
  53. Shehata, M. G., Badr, A. N., Abdel-Razek, A. G., Hassanein, M. M. and Amra, H. A. 2017. Oil-bioactive films as an antifungal application to save post-harvest food crops. Annu. Res. Rev. Biol. 16:1-16.
  54. Sholberg, P., Marchi, A. and Bechard, J. 1995. Biocontrol of postharvest diseases of apple using Bacillus spp. isolated from stored apples. Can. J. Microbiol. 41:247-252. https://doi.org/10.1139/m95-034
  55. Spadoni, A., Guidarelli, M., Phillips, J., Mari, M. and Wisniewski, M. 2015. Transcriptional profiling of apple fruit in response to heat treatment: involvement of a defense response during Penicillium expansum infection. Postharvest Biol. Technol. 101:37-48. https://doi.org/10.1016/j.postharvbio.2014.10.009
  56. Teixido, N., Usall, J., Magan, N. and Vinas, I. 1999. Microbial population dynamics on Golden Delicious apples from bud to harvest and effect of fungicide applications. Ann. Appl. Biol. 134:109-116. https://doi.org/10.1111/j.1744-7348.1999.tb05241.x
  57. Tessmer, M. A., Appezzato-da-Gloria, B. and Antoniolli, L. R. 2016. Influence of growing sites and physicochemical features on the incidence of lenticel breakdown in 'Gala' and 'Galaxy' apples. Sci. Hortic. 205:119-126. https://doi.org/10.1016/j.scienta.2016.04.027
  58. The R Foundation. 2020. The R project for statistical computing. URL https://www.r-project.org/ [14 July 2020].
  59. Tosco, A., Chobelet, A., Bathany, K., Schmitter, J.-M., Urdaci, M. C. and Bure, C. 2015. Characterization by tandem mass spectrometry of biologically active compounds produced by Bacillus strains. J. Appl. Bioanal. 1:19-25. https://doi.org/10.17145/jab.15.004
  60. Venables, W. N. and Ripley, B. D. 2002. Modern applied statistics with S. 4th ed.Springer, New York, NY, USA. 495 pp.
  61. Wallace, R. L., Hirkala, D. L. and Nelson, L. M. 2017. Postharvest biological control of blue mold of apple by Pseudomonas fluorescens during commercial storage and potential modes of action. Postharvest Biol. Technol. 133:1-11. https://doi.org/10.1016/j.postharvbio.2017.07.003
  62. Wang, Y., Yuan, Y., Liu, B., Zhang, Z. and Yue, T. 2016. Biocontrol activity and patulin-removal effects of Bacillus subtilis, Rhodobacter sphaeroides and Agrobacterium tumefaciens against Penicillium expansum. J. Appl. Microbiol. 121:1384-1393. https://doi.org/10.1111/jam.13208
  63. Wen, Z., Duan, T., Christensen, M. J. and Nan, Z. 2015. Bacillus subtilis subsp. spizizenii MB29 controls alfalfa root rot caused by Fusarium semitectum. Biocontrol Sci. Technol. 25:898-910. https://doi.org/10.1080/09583157.2015.1020759
  64. Wrona, B. and Grabowski, M. 2004. Influence of fructose and glucose occurring on fruit surface on the growth of fungi that cause sooty blotch of apple. J. Plant Prot. Res. 44:287-291.
  65. Xu, X. M. and Jeger, M. J. 2013. Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology 103:108-116. https://doi.org/10.1094/PHYTO-07-12-0167-R
  66. Yang, H., Li, X., Li, X., Yu, H. and Shen, Z. 2015. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal. Bioanal. Chem. 407:2529-2542. https://doi.org/10.1007/s00216-015-8486-8
  67. Yu, S.-M., Oh, B.-T. and Lee, Y. H. 2012. Biocontrol of green and blue molds in postharvest satsuma mandarin using Bacillus amyloliquefaciens JBC36. Biocontrol Sci. Technol. 22:1181-1197. https://doi.org/10.1080/09583157.2012.719150
  68. Yu, X., Ai, C., Xin, L. and Zhou, G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47:138-145. https://doi.org/10.1016/j.ejsobi.2010.11.001
  69. Zhang, Y., Li, P. and Cheng, L. 2010. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in 'Honeycrisp' apple flesh. Food Chem. 123:1013-1018. https://doi.org/10.1016/j.foodchem.2010.05.053