DOI QR코드

DOI QR Code

The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress

  • Usmonov, Alisher (Department of Applied Bioscience, Dong-A University) ;
  • Yoo, Sung-Je (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Sang Tae (Department of Applied Bioscience, Dong-A University) ;
  • Yang, Ji Sun (Department of Applied Bioscience, Dong-A University) ;
  • Sang, Mee Kyung (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jung, Ho Won (Department of Molecular Genetics, Dong-A University)
  • Received : 2020.12.11
  • Accepted : 2021.01.12
  • Published : 2021.02.01

Abstract

Various management systems are being broadly employed to minimize crop yield loss resulting from abiotic and biotic stresses. Here we introduce a Bacillus zanthoxyli HS1 strain as a potent candidate for managing manifold stresses on vegetable plants. Considering 16S rDNA sequence and biochemical characteristics, the strain is closely related to B. zanthoxyli. The B. zanthoxyli HS1's soil-drench confers disease resistance on tomato and paprika plants against infection with Ralstonia solanacearum and Phytophthora capsici, respectively. Root and shoot growths are also increased in B. zanthoxyli HS1-treated cabbage, cucumber, and tomato plants, compared with those in mock-treated plants, after application of high salinity solution. Moreover, the pretreatment of B. zanthoxyli HS1 on cabbage plants inhibits the degradation of chloroplast pigments caused by high salinity stresses, whereas the inhibitory effect is not observed in cucumber plants. These findings suggest that B. zanthoxyli HS1 stain inhibits disease development and confers tolerance to salinity stress on vegetable plants.

Keywords

References

  1. Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G. F. and van der Linden, G. 2018. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J. 93:781-793. https://doi.org/10.1111/tpj.13800
  2. Chakraborty, K., Bhaduri, D., Meena, H. N. and Kalariya, K. 2016. External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 103:143-153. https://doi.org/10.1016/j.plaphy.2016.02.039
  3. Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P. and Varma, A. 2015. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J. Plant Growth Regul. 35:276-300. https://doi.org/10.1007/s00344-015-9521-x
  4. Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833. https://doi.org/10.1038/35081161
  5. Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G. and Schroeder, J. I. 2014. Plant salt-tolerance mechanisms. Trends Plant Sci. 19:371-379. https://doi.org/10.1016/j.tplants.2014.02.001
  6. Egamberdieva, D. 2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 31:861-864. https://doi.org/10.1007/s11738-009-0297-0
  7. Egamberdieva, D. 2011. Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol. Plant. 34:751-756. https://doi.org/10.1007/s11738-011-0875-9
  8. Etesami, H. and Glick, B. R. 2020. Halotolerant plant growth-promoting bacteria: prospects for alleviating salinity stress in plants. Environ. Exp. Bot. 178:104124. https://doi.org/10.1016/j.envexpbot.2020.104124
  9. Fita, A., Rodriguez-Burruezo, A., Boscaiu, M., Prohens, J. and Vicente, O. 2015. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front. Plant Sci. 6:978.
  10. Flowers, T. J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307-319. https://doi.org/10.1093/jxb/erh003
  11. Flowers, T. J. and Yeo, A. R. 1995. Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22:875-884. https://doi.org/10.1071/PP9950875
  12. Glick, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251:1-7. https://doi.org/10.1016/j.femsle.2005.07.030
  13. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129
  14. Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E. and Shabala, S. 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J. Exp. Bot. 62:185-193. https://doi.org/10.1093/jxb/erq257
  15. Havaux, M. 2014. Carotenoid oxidation products as stress signals in plants. Plant J. 79:597-606. https://doi.org/10.1111/tpj.12386
  16. Ilangumaran, G. and Smith, D. L. 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front. Plant Sci. 8:1768. https://doi.org/10.3389/fpls.2017.01768
  17. Jamil, M., Rehman, S. U., Lee, K. J., Kim, J. M., Kim, H.-S. and Rha, E. S. 2007. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci. Agric. 64:111-118. https://doi.org/10.1590/S0103-90162007000200002
  18. Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Lukasik, I., Goltsev, V. and Ladle, R. J. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38:102. https://doi.org/10.1007/s11738-016-2113-y
  19. Kumar, A. and Verma, J. P. 2018. Does plant-Microbe interaction confer stress tolerance in plants: a review? Microbiol. Res. 207:41-52. https://doi.org/10.1016/j.micres.2017.11.004
  20. Kumar, D. 2005. Breeding for drought resistance. In: Abiotic stresses: plant resistance through breeding and molecular approaches, eds. by M. Ashraf and P. J. C. Harris, pp. 145-147. Food Products Press, New York, NY, USA.
  21. Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, eds. by E. Stackebrandt and M. Goodfellow, pp. 115-175. Wiley, Chichester, UK.
  22. Li, H.-W., Zang, B.-S., Deng, X.-W. and Wang, X.-P. 2011. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007-1018. https://doi.org/10.1007/s00425-011-1458-0
  23. Li, M., Hong, C. Y., Yan, W. X., Chao, Z. S., Gang, Y. C., Ling, D. J., Kui, Z. X., Qin, X. J., Liang, Z. M. and He, M. M. 2017. Bacillus zanthoxyli sp. nov., a novel nematicidal bacterium isolated from Chinese red pepper (Zanthoxylum bungeanum Maxim) leaves in China. Antonie Van Leeuwenhoek 110:1179-1187. https://doi.org/10.1007/s10482-017-0890-y
  24. Liang, Z. S., Ding, Z. R. and Wang, S. T. R. 1992. Study on type of water stress adaptation in both Brassica napus and B. juncea L. species. Acta Bot. 12:38-45.
  25. Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444:139-158. https://doi.org/10.1016/j.abb.2005.10.018
  26. Majeed, A., Muhammad, Z. and Ahmad, H. 2018. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep. 37:1599-1609. https://doi.org/10.1007/s00299-018-2341-2
  27. Miller, R. N. G., Costa Alves, G. S. and Van Sluys, M.-A. 2017. Plant immunity: unravelling the complexity of plant responses to biotic stresses. Ann. Bot. 119:681-687. https://doi.org/10.1093/aob/mcw284
  28. Mittal, S., Kumari, N. and Sharma, V. 2012. Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol. Biochem. 54:17-26. https://doi.org/10.1016/j.plaphy.2012.02.003
  29. Mungala, A. J., Radhakrishnan, T. and Dobaria, J. R. 2008. In vitro screening of 123 Indian peanut cultivars for sodium chloride induced salinity tolerance. World J. Agric. Sci. 4:574-582.
  30. Munns, R. and Gilliham, M. 2015. Salinity tolerance of crops - what is the cost? New Phytol. 208:668-673. https://doi.org/10.1111/nph.13519
  31. Munoz-Mayor, A., Pineda, B., Garcia-Abellan, J. O., Anton, T., Garcia-Sogo, B., Sanchez-Bel, P., Flores, F. B., Atares, A., Angosto, T., Pintor-Toro, J. A., Moreno, V. and Bolarin, M. C. 2012. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J. Plant Physiol. 169:459-468. https://doi.org/10.1016/j.jplph.2011.11.018
  32. Polonenko, D. R., Mayfield, C. I. and Dumbroff, E. B. 1981. Microbial responses to salt-induced osmotic stress. Plant Soil 59:269-285. https://doi.org/10.1007/BF02184200
  33. Qu, L., Huang, Y., Zhu, C., Zeng, H., Shen, C., Liu, C., Zhao, Y. and Pi, E. 2016. Rhizobia-inoculation enhances the soybean's tolerance to salt stress. Plant Soil 400:209-222. https://doi.org/10.1007/s11104-015-2728-6
  34. Rathinasabapathi, B. 2000. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann. Bot. 86:709-716. https://doi.org/10.1006/anbo.2000.1254
  35. Rouphael, Y. and Colla, G. 2018. Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 9:1655. https://doi.org/10.3389/fpls.2018.01655
  36. Ruan, C.-J., da Silva, J. A. T., Mopper, S., Qin, P. and Lutts, S. 2010. Halophyte improvement for a salinized world. Crit. Rev. Plant Sci. 29:329-359. https://doi.org/10.1080/07352689.2010.524517
  37. Sarkar, A., Ghosh, P. K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., Mondal, M. H. and Maiti, T. K. 2018. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol. 169:20-32. https://doi.org/10.1016/j.resmic.2017.08.005
  38. Singh, A. K. and Dubey, R. S. 1995. Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynthetica 31:489-499.
  39. Thurston, H. D. 1992. Sustainable practices for plant disease management in traditional farming systems. Westview Press, Boulder, CO, USA. 280 pp.
  40. Turan, S. and Tripathy, B. C. 2015. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol. Plant. 153:477-491. https://doi.org/10.1111/ppl.12250
  41. Ullah, A., Heng, S., Munis, M. F. H., Fahad, S. and Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ. Exp. Bot. 117:28-40. https://doi.org/10.1016/j.envexpbot.2015.05.001
  42. Ullah, S., Hussain, M. B., Khan, M. Y. and Asghar, H. N. 2017. Ameliorating salt stress in crops through plant growth-promoting bacteria. In: Plant-microbe interactions in agroecological perspectives, eds. by D. P. Singh, H. B. Singh and R. Prabha, pp. 549-575. Springer, Singapore.
  43. Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S. and Maggio, A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4:5. https://doi.org/10.1186/s40538-017-0089-5
  44. Walters, D., Walsh, D., Newton, A. and Lyon, G. 2005. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368-1373. https://doi.org/10.1094/PHYTO-95-1368
  45. Yoo, S.-J., Kim, J. W., Kim, S. T., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus mesonae H20-5 on fruit yields and quality in protected cultivation. Res. Plant Dis. 25:84-88. https://doi.org/10.5423/RPD.2019.25.2.84