SYMMETRY AND UNIQUENESS OF EMBEDDED MINIMAL HYPERSURFACES IN \mathbb{R}^{n+1}

Sung-Ho Park

Abstract. In this paper, we prove some rigidity results about embedded minimal hypersurface $M \subset \mathbb{R}^{n+1}$ with compact ∂M that has one end which is regular at infinity. We first show that if $M \subset \mathbb{R}^{n+1}$ meets a hyperplane in a constant angle $\geq \pi/2$, then M is part of an n-dimensional catenoid. We show that if M meets a sphere in a constant angle and ∂M lies in a hemisphere determined by the hyperplane through the center of the sphere and perpendicular to the limit normal vector n_M of the end, then M is part of either a hyperplane or an n-dimensional catenoid.

We also show that if M is tangent to a C^2 convex hypersurface S, which is symmetric about a hyperplane P and n_M is parallel to P, then M is also symmetric about P. In special, if S is rotationally symmetric about the x_{n+1}-axis and $n_M = e_{n+1}$, then M is also rotationally symmetric about the x_{n+1}-axis.

1. Introduction

In [7], Schoen defined the notion of an end E of a minimal hypersurface $M \subset \mathbb{R}^{n+1}$ being regular at infinity, and showed that a complete minimal immersion $M \subset \mathbb{R}^{n+1}$ with two ends, which are regular at infinity, is either an n-dimensional catenoid or a pair of hyperplanes [7]. In \mathbb{R}^3, Osserman showed that an end of a complete minimal surface is regular at infinity if and only if the end has finite total curvature and is embedded [5].

In [1], Choe used the Weierstrass representation formula for minimal surfaces in \mathbb{R}^3 and the fact that the Gauss map of a minimal surface in \mathbb{R}^3 is meromorphic to show that a minimal surface meeting a plane in a constant angle can be reflected across the plane. In special, Choe showed that if a complete minimal surface has finite total curvature and one end of the surface meets a plane in a constant angle, then the minimal surface is a catenoid. In [6], the authors showed that a minimal hypersurface in \mathbb{R}^{n+1} meeting a sphere in a constant
angle and staying in a half space, determined by a hyperplane passing through
the center of the sphere, is part of an n-dimensional catenoid or a hyperplane.

We generalize the above results using a variation of the Alexandrov’s reflection argument based on the spherical reflection developed in [6]. Actually, we prove some rigidity and symmetry results about embedded minimal hypersurface $M \subset \mathbb{R}^{n+1}$ with one end, which is regular at infinity, meeting a hyperplane or a sphere in a constant angle. Throughout the paper, we assume that ∂M is compact. First we show that if $M \subset \mathbb{R}^{n+1}$ meets a hyperplane Π in a constant angle $\gamma \geq \pi/2$, then M is part of an n-dimensional catenoid. (See §2 for the choice of γ.) Next we show that if M meets a sphere in a constant angle and ∂M lies in a hemisphere determined by the hyperplane perpendicular to n_M (the limit normal vector of the end), then M is part of either a hyperplane or an n-dimensional catenoid.

We also show that if $M \subset \mathbb{R}^{n+1}$ is tangent to a C^2 convex hypersurface S, which is symmetric about a hyperplane P and n_M is parallel to P, then M is also symmetric about P. If S is rotationally symmetric about the x_{n+1}-axis, then M is symmetric about each hyperplane containing x_{n+1}-axis and parallel to n_M. Moreover, if $n_M = e_{n+1}$, then M is rotationally symmetric.

2. Complete minimal hypersurfaces meeting a hyperplane or a sphere in constant angle

An end E of a minimal hypersurface in \mathbb{R}^{n+1} is regular at infinity if i) after a suitable rotation, E is the graph of a function u having bounded slope on the exterior of some bounded domain in $\Pi = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} = 0\}$, and ii) for the coordinates $x = (x_1, \ldots, x_n)$ on Π, u satisfies the following asymptotic behavior for $|x|$ large: if $n = 2$

$$u(x) = a \log |x| + b + \frac{c_1 x_1 + c_2 x_2}{|x|^2} + O\left(|x|^{-2}\right),$$

if $n \geq 3$

$$u(x) = b + a|x|^{2-n} + \sum_{j=1}^{n} c_j x_j |x|^{-n} + O\left(|x|^{-n}\right)$$

for constants a, b, c_j [7]. If $n = 2$ and $a \neq 0$, then E is asymptotic to an end of a catenoid, and is called catenoidal. If $n = 2$ and $a = 0$ or $n \geq 3$, then E is asymptotic to a (hyper)plane. If $n = 2$, then E is called planar. The limit unit normal vector n_M of the end is the limit of the unit normal vector of the end as $|x| \to \infty$.

Let

$$\Pi_t = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} = t\},$$

$$\Pi_{[a,b]} = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : a \leq x_{n+1} \leq b\}.$$
Let $\Pi_0^+ = \Pi_{[0, \infty)}$. Hence $\Pi = \Pi_0$, $\Pi^+ = \Pi_0^+$ and $\Pi^- = \Pi_0^-$. For a nonzero vector u, let

$$\Pi_u = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : (x_1, \ldots, x_{n+1}) \cdot u = 0\}.$$

We use similar notations for Π_u. Let $e_{n+1} = (0, \ldots, 0, 1)$.

In the hyperplane case, we assume that M meets Π_1. In the sphere case, we assume that M meets the unit sphere $S^n(O, 1)$. We note that M divides the half space Π_1^+ (in the hyperplane case) or $\mathbb{R}^{n+1} \setminus B^{n+1}(O, 1)$ (in the sphere case) into two parts. Let U_M be the component of $\Pi_1^+ \setminus M$ or $\mathbb{R}^{n+1} \setminus B^{n+1}(O, 1)$ which stays above M for $x \in \Pi$ with large $|x|$. The unit normal vector ν on M is chosen to point into $\overline{U_M}$, and n_M is the limit of ν. Note that $n_M \cdot e_{n+1} = 0$. The contact angle γ between M and Π_1 or $S^n(O, 1)$ is measured between the outward conormals η along ∂M and η_{U_M} of $\Pi_1 \cap \overline{U_M}$ or $S^n(O, 1) \cap \overline{U_M}$ along the boundary.

We note that, outside some compact set, M is a graph over Π_{n_M}. If M is not flat and has an asymptotic hyperplane $\Pi_{n_M}^1$ and meets a sphere or a convex hypersurface in a constant contact angle, then ∂M lies on one side of $\Pi_{n_M}^1$. Otherwise, one may use the maximum principle for the 2nd order elliptic pde [3] to see that $\eta \cdot n_M > 0$ and $\eta \cdot n_M < 0$ at the points p_1 and p_2 where $x \cdot n_M$ attains maximum and minimum on ∂M respectively. Hence, $\gamma = \pi/2$ must have different signs at p_1 and p_2. In the following, we assume that either $a > 0$ in (1) or (2), or ∂M lies below $\Pi_{n_M}^1$.

For completeness, we prove the following.

Lemma 2.1. Let M be an embedded minimal hypersurface in \mathbb{R}^{n+1} ($n \geq 2$) having one regular at infinity end and meeting Π_1 in a constant angle with compact ∂M. Then the limit unit normal n_M of M is perpendicular to Π_1.

Proof. The flux of M along ∂M is

$$\text{Flux}(\partial M) = \int_{\partial M} \eta.$$

If $n = 2$, then $\text{Flux}(\partial M) = c n_M$. Moreover, $c \neq 0$ if the end is catenoidal, and $c = 0$ if the end is planar [2]. Similarly, when $n \geq 3$, one may use (2) to see that $\text{Flux}(\partial M) = c n_M$ with $c \neq 0$ if $a \neq 0$ and $c = 0$ if $a = 0$. Clearly, n_M is perpendicular to the asymptotic hyperplane of the end.

Along ∂M, we have $\eta = -(\sin \gamma) e_{n+1} + (\cos \gamma) \eta_{U_M}$. Since γ is constant, we use the divergence theorem to get

$$\int_{\partial M} \eta = \int_{\partial M} (-(\sin \gamma) e_{n+1} + (\cos \gamma) \eta_{U_M}) = -(\sin \gamma) \text{Vol}(\partial M)e_{n+1}.$$

If $n = 2$ and the end is planar or $n > 2$ and $a = 0$ in (2), then we have $\gamma = 0$. Hence M is a hyperplane and consequently $M = \Pi_1$, which contradicts that ∂M is compact. Otherwise, we have n_M and e_{n+1} are parallel. Hence, $n_M \perp \Pi_1$. □
The spherical reflection

$$SR_1 : \mathbb{R}^{n+1} \setminus \{O\} \rightarrow \mathbb{R}^{n+1}$$

about the unit sphere $S^n(O, 1)$ is defined by

$$SR_1(x) = \frac{x}{|x|^2}.$$

It is easy to see that for an end \mathcal{E} of (1) or (2), $SR_1(\mathcal{E}) \cup \{O\}$ is C^1 at O. From [4], we recall the following.

Lemma 2.2. For a smooth hypersurface $M \subset \mathbb{R}^{n+1}$ and $x \in M$, the mean curvature H of $SR_1(M)$ at $SR_1(x)$ is given by

$$\tilde{H}(SR_1(x)) = H(x)|x|^2 + 2x \cdot \nu,$$

where $H(x)$ is the mean curvature of M at x with respect to the unit normal ν of M.

For a unit vector $v \in \Pi_{n+1}$, let V_0 be the hyperplane passing through O and containing the $(n-1)$-dimensional plane perpendicular to v in Π_{n+1}, and making angle θ with v. (θ is chosen in such a way that V_0 is above v for small θ.) Let R_θ be the reflection about V_0. For a subset $D \subset \mathbb{R}^{n+1}$ and $0 \leq \theta < \pi/2$, let D°_θ be the subset of D on or below V_0, and let D°_θ be the subset of D on or above V_0.

Theorem 2.3. Let M be an embedded minimal hypersurface in \mathbb{R}^{n+1} having one end, which is regular at infinity. Suppose that $M \subset \Pi^+_1$ meets the hyperplane Π_1 in a constant angle $\gamma > \pi/2$ along ∂M, which is compact. Then M is part of an n-dimensional catenoid.

Proof. From Lemma 2.1, we may assume that $M \subset \Pi^+_1$. We first show that M is a graph over Π_1. Fix $t_1 > 0$ so that $M_{[t_1, \infty)} \cap \Pi_{[t_1, 2, \infty)}$ is a graph over Π in (1) or (2), and the projection $p : M \rightarrow \Pi$ is one-to-one on $\{(x, x_{n+1}) \in M : x_{n+1} \geq t_1/2\}$.

Suppose that $M_{[1, t_1]}$ is not a graph over Π. Decreasing t from t_1 to 1, there exists t_0 such that the reflection $M^{R_{[t_0, t_1]}}_{[t_0, t_1]}$ about Π_{t_0} meets $M_{[1, t_0]}$ for the first time i) tangentially at an interior point of $M_{[1, t_0]}$, ii) tangentially at a boundary point of $M_{[1, t_0]}$ or iii) transversally at a point in ∂M. If i) or ii) holds, then $M^{R_{[t_0, t_1]}}_{[t_0, t_1]}$ and $M_{[1, t_0]}$ coincide by the comparison principles of the 2nd order elliptic pdes. Hence Π_{t_0} is a symmetry plane of M. Since $M^{R_{[t_0, t_1]}}_{[t_0, t_1]}$ is a graph over Π, we should have $\gamma < \pi/2$, which is a contradiction. If iii) holds, then x_{n+1} of $M^{R_{[t_0, t_1]}}_{[t_0, t_1]}$ has an interior local minimum, which is impossible.

Using a parallel translation, we may assume that $N \equiv (0, \ldots, 0, 1) \notin \partial M$. We note that $\tilde{M} = SR_1(M) \cup \{O\}$ is C^1 at O, $SR_1(M) \subset B^{n+1}(N', 1/2)$. Using
a parallel translation and a proper homothety, we may assume that \(SR_t(\partial M) \) lies in the upper hemisphere \(\bar{S}^+ \) of \(S^n(N', 1/2) \). Let
\[
M = SR_t(\partial U_M) \cup \{O\}.
\]

For each unit vector \(v \in \Pi \), we show that \(V_{\pi/2} \) is symmetry hyperplane of \(M \). Let \(W_t \subset \Pi_1 \) be the \((n-1)\)-plane perpendicular to \(v \) where \(t = v \cdot y \) for \(y \in W_t \). For big \(t > 0 \), \(W_t \cap \partial M = \emptyset \). Decreasing \(t \), there exists \(t_0 \) such that the reflection of \((\partial M)^{t_0} = \partial M \cap \left(\bigcup_{t \geq t_0} W_t \right) \) about \(W_{t_0} \) is tangent to \((\partial M)^{t_0} = \partial M \cap \left(\bigcup_{t \leq t_0} W_t \right) \) for the first time at some point, say \(x_0 \), in \((\partial M)^{t_0} \).

Using a parallel translation and a homothety centered at \(N \), we may assume that \(t_0 = 0 \) and \(\partial M \subset B^n(N, 1) \subset \Pi_1 \). We have \(V_0 \cap M = \{O\}, W_0 \subset V_0 \) and
\[
(SR_1)^{-1} \circ R_\theta \circ SR_1 = R_\theta.
\]

Since \(M \) is a graph over \(\Pi_1 \), we have \(R_\theta((\partial M)_{\theta_0}^+) \cap M_{\theta_0}^+ = \emptyset \) for \(\theta < \pi/2 \), and \(R_\theta((\partial M)_{\theta_0}^-) \cap M_{\theta_0}^- = \{O\} \) for \(\theta > \pi/2 \). Increasing \(\theta \) from 0 to \(\pi/2 \), there exists \(\theta_0 \) such that \(R_{\theta_0}(M_{\theta_0}^-) \) and \(M_{\theta_0}^+ \) meets for the first time i) tangentially at \(x \in \text{int}(M_{\theta_0}^+) \) or ii) at \(x \in \partial \left(M_{\theta_0}^+ \right) \) tangentially. Let \(x_0 \in M_{\theta_0}^- \) for which \(R_{\theta_0}(x_0) = x \).

We show that \(\theta_0 = \pi/2 \). Otherwise, \(x \in M_{\theta_0}^+ \) and \(x \neq O \). Suppose that i) holds. Since \(R_{\theta_0}(\partial M_{\theta_0}^+) \cap M_{\theta_0}^- = \emptyset \) for \(\theta < \pi/2 \), we have \(x_0 \in \text{int}(M_{\theta_0}^-) \), and \(R_{\theta_0}(M_{\theta_0}^-) \) and \(M_{\theta_0}^+ \) are tangent at \(x \). Applying \((SR_1)^{-1}\), we see that \(R_{\theta_0}(M_{\theta_0}^-) \) and \(M_{\theta_0}^+ \) are tangent at \(SR^{-1}_1(x) \) and \(R_{\theta_0}(M_{\theta_0}^-) \) lies on one side of \(M_{\theta_0}^+ \) near \(SR^{-1}_1(x) \). Since \(R_{\theta_0}(M_{\theta_0}^-) \) and \(M_{\theta_0}^+ \) are both minimal, \(R_{\theta_0}(M_{\theta_0}^-) \) and \(M_{\theta_0}^+ \) coincide by the comparison principles for the 2nd order elliptic pde's. Hence \(V_{\theta_0} \) is a symmetry hyperplane of \(M \), which contradicts \(n_M = e_{n+1} \). If ii) holds, then \(x \in \text{int}(M) \cap V_0 \). It is easy to see that \(V_{\theta_0} \) is also a symmetry hyperplane of \(M \) as above, which is a contradiction.

Hence \(\theta_0 = \pi/2 \). By the choice of \(x_0 \) and the fact that \(\gamma \) is constant, \(R_{\pi/2}(M_{\pi/2}^-) \) and \(M_{\pi/2}^+ \) are tangent at \(SR_1(x_0) \in M_{\pi/2}^+ \setminus \{O\} \). Note that \(SR_1(x_0) \) might be a corner point on \(M_{\pi/2}^+ \cap V_{\pi/2} \). One may apply the comparison principles for the 2nd order elliptic pde's at a boundary point or at a corner point \([4]\) to see that \(R_{\pi/2}(M_{\pi/2}^-) \) and \(M_{\pi/2}^+ \) coincide as above. Hence \(V_{\pi/2} \) is a symmetry hyperplane of \(M \). Since \(v \in \Pi \) is arbitrary, \(M \) is rotationally symmetric.

In [6], the authors showed that an embedded minimal hypersurface \(M \subset \mathbb{R}^{n+1} \) with one regular at infinity end that meets \(S^n(O, 1) \) in a constant angle is a hyperplane or an \(n \)-dimensional catenoid if \(M \) stays in a half space determined by a hyperplane passing through \(O \).

The following lemma is a generalization of the result in [6]. In the following lemma, the end of \(M \) is a graph of a function \(u \) on the exterior of some compact
Lemma 2.4. Let \(H \) be an embedded minimal hypersurface in \(\mathbb{R}^{n+1} \) with one regular at infinity end, which is a graph of a function \(u \) as in (1) on the exterior of some compact set in \(H_{nM} \) and \(nM \cdot e_{n+1} > 0. \) Suppose that \(H \) meets \(S^n(O,1) \) in a constant contact angle and lies outside of \(S^n(O,1). \) If \(\partial H \) lies in the upper hemisphere and either \(n = 2 \) and \(a > 0 \) in (1) or \(\partial H \) lies below the asymptotic hyperplane \(\Pi_{nM}^1 \) of the end, then \(H \) is either a hyperplane or an \(n \)-dimensional catenoid.

Proof. We may assume that \(\partial H \) is not flat. There is \(\delta > 0 \) such that \(\partial H \subset \Pi_\delta^+ \).
Clearly, \(H^+ = H \cap \Pi^+ \) is a graph over \(\Pi. \) Note that \(\tilde{M} = SR_1(M) \cup \{O\} \) is \(C^1 \) with \(T_O \tilde{M} = H_{nM}. \) Clearly, \(\tilde{M}^+ \) lies above the reflection \(R(\tilde{M}^-) \) of \(\tilde{M}^- \) about \(\Pi, \) and is transversal to \(R(\tilde{M}^-) \) along the boundary.

We fix a unit vector \(v \in \Pi. \) Let \(U_\theta \) be the hyperplane containing the \((n-1) \)-plane perpendicular to \(v \) in \(\Pi \) and making angle \(\theta \) with \(v. \) There exists \(\theta^0 \) such that \(U_{\theta^0} \perp H_{nM}. \) Increasing \(\theta \) from 0 to \(\theta^0, \) there is \(\theta_v \) for which \(\tilde{R}_{\theta_v}(\tilde{M}_\theta^+) \) and \(\tilde{M}_\theta^+ \) meet tangentially for the first time either at an interior point \(\tilde{x} \) of \(\tilde{M}_\theta^+ \) or at a point on \(\partial \tilde{M}_\theta^+. \) If \(\theta_v = \theta^0 \) and \(\tilde{x} = O, \) then we repeat the above process with \(-v \) instead of \(v. \) Then we get a new \(\theta_v \) and \(\tilde{x} \) such that either \(\theta_v = \theta^0 \) or \(\theta_v = \theta^0 \) and \(\tilde{x} = O. \) Since \(\tilde{R}_{\theta_v}(\tilde{M}_\theta^+) \) and \(\tilde{M}_\theta^+ \) are tangent at \(\tilde{x} \neq O, \) \(\tilde{R}_{\theta_v}(\tilde{M}_\theta^+) \) and \(\tilde{R}_{\theta_v}(\tilde{M}_\theta^+) \) are tangent at \(\tilde{x} \). We see that \(\tilde{R}_{\theta_v}(\tilde{M}_\theta^+) \) and \(\tilde{R}_{\theta_v}(\tilde{M}_\theta^+) \) coincide and \(U_{\theta_v} \) is a symmetry hyperplane of \(H. \) Moreover, we should have \(\theta_v = \theta^0. \) Since \(v \) is arbitrary, \(H \) is rotationally symmetric about the line parallel to \(n_M. \)

In the following theorem, \(\partial H \) lies in the lower hemisphere, while \(\partial H \) lies in the upper hemisphere for \(|x| \) large. The reflection \(R(\tilde{M}^-) \) of \(\tilde{M}^- \) about \(\Pi \) may not be a graph over \(\Pi. \)

Theorem 2.5. Let \(M \subset \mathbb{R}^{n+1} \) be an embedded minimal hypersurface having one end, which is regular at infinity with \(n_M = e_{n+1}. \) Suppose that \(\partial H \) lies outside of \(S^n(O,1) \) in a constant contact angle \(\gamma \) along \(\partial H, \) which is compact and lies in the lower hemisphere \(S^n(O,1) \cap \Pi^- \). Then \(M \) is part of an \(n \)-dimensional catenoid or part of a hyperplane.

Proof. Since \(M \) is minimal and \(\partial H \) lies in \(\Pi_{n+1} \) for \(|x| \) large, \(M \cap \Pi_{-1} = \emptyset \) unless \(M = \Pi_{-1}. \) We assume that \(M \) is not flat. There exists \(0 < \delta < 1 \) such that \(M \subset \Pi_{n+1}^+ \) and \(\partial M \cap \Pi_{-1}^+ \neq \emptyset. \) It follows that \(\gamma < \pi/2. \) Fix \(t_1 > 0 \) such that \(M_{t_1/2} \) is a graph over \(\Pi, \) and the projection \(p : M \to \Pi \) is one-to-one on \(\{(x,x_{n+1}) \in M : x_{n+1} \geq t_1/2\}. \) We may assume that \(M_{t_1} \) is connected.

Step I) We show that \(M \) is a graph over \(\Pi. \) Suppose that \(M_{t_1} \) is not a graph over \(\Pi. \) Decreasing \(t \) from \(t_1 \) to \(-1, \) there exists \(t_0 \) such that the reflection
\[M_{[t_0, t_1]}^{R_{[t_0]}} \text{ of } M_{[t_0, t_1]} \text{ about } \Pi_{t_0} \text{ meets } M_{[-1, t_0]} \text{ for the first time \(i \) tangentially at an interior point of } M_{[-1, t_0]} \text{; \(ii \) tangentially at a boundary point of } M_{[-1, t_0]} \text{ or \(iii \) transversally at a point } x_f \in \partial M. \]

If \(i \) or \(ii \) holds, then \(M_{[t_0, t_1]}^{R_{[t_0]}} \) and \(M_{[-1, t_0]} \) coincide by the comparison principles for the 2nd order elliptic pdes. Since \(\partial M \subset \Pi^- \) and \(M \) lies outside of \(S^n(O, 1) \), both \(M_{[-1, t_0]} \) and \(M_{[t_0, t_1]}^{R_{[t_0]}} \) cannot be a graph over \(\Pi \). This is a contradiction.

Now suppose that \(iii \) holds. Then \(M_{[t_0, t_1]}^{R_{[t_0]}} \cap B^{n+1}(O, 1) \neq \emptyset \). Clearly, \(M_{[t_0, \infty]} \) is a graph over \(\Pi \) and \(M_{[t_0, t_1]} \) is connected. We first show that the projection \(p : M_{[t_0, t_1]} \rightarrow B^n(O, 1) \subset \Pi \) is onto. Otherwise, there is \(q \in B^n(O, 1) \setminus p(M_{[t_0, t_1]}) \). Let \(M_{t_0}^q \) be the component of \(M \cap \Pi_{t_0} \) containing \((q, t_0) \) inside and no other component of \(M \cap \Pi_{t_0} \). Let \(M_{-1, t_0}^q \) be the component of \(M_{[-1, t_0]} \) having \(M_{t_0}^q \) as boundary. Since \(M_{[t_0, t_1]} \) is a graph over \(\Pi \) and \(q \in B^n(O, 1) \setminus p(M_{[t_0, t_1]}) \) and
\[M_{[t_0, t_1]}^{R_{[t_0]}} \cap B^{n+1}(O, 1) \neq \emptyset, \]
we have \(p(M_{t_0}^q) \cap B^n(O, 1) \neq \emptyset \). Moreover, \(M_{[-1, t_0]}^q \) lies between \(M_{[t_0, t_1]}^{R_{[t_0]}} \) and \(S^n(O, 1) \). Since \(\partial M \) lies in the lower hemisphere and \(M_{t_0}^q \) surrounds \((q, t_0) \) in \(\Pi_{t_0} \) and \(p^{-1}(q, 0) \cap M = \emptyset \), it follows that \(M_{[-1, t_0]}^q \) cannot exist. Hence \(p : M_{[t_0, t_1]} \rightarrow B^n(O, 1) \) is onto.

Using the Sard’s theorem, we assume that \(M_0 = M \cap \Pi \) is regular. (One may use \(\Pi' \) instead of \(\Pi \) for small \(\epsilon > 0 \).) If \(M_0 \) is connected and encloses \(B^n(O, 1) \subset \Pi \), then, for some point \(a \in B^n(O, 1) \), \(p^{-1}(a) \cap (M \cap \Pi^+ \cap \Pi^-) \) should contain at least 2 points. In this case, \(iii \) cannot happen. Hence \(M_0 \) either consists of at least 2 components or is connected and encloses a region disjoint from \(B^n(O, 1) \subset \Pi \). It follows that \(T = \{x \in M : \Pi \cap M \text{ contains at least } 2 \text{ points}\} \) is not empty.

Let dist\((O, x)\), for \(x \in T \), attains maximum at \(\hat{P} \) and let \(w = \overline{OP}/|\overline{OP}| \). For small \(\epsilon > 0 \), let \(w_\epsilon = \hat{w} - \epsilon \). We apply the Alexandrov’s reflection argument to \(M \) using the hyperplanes \(\Pi_{w_\epsilon}^+ \). Let \(R_s \) be the reflection about \(\Pi_{w_\epsilon}^+ \). For large \(s \), \(\Pi_{w_\epsilon}^+ \) is disjoint from \(M_{[-1, t_1]} \), and \(R_s(M_{w_\epsilon}^+) \), where \(M_{w_\epsilon}^+ = \{x \in M : x \cdot w_\epsilon > s\} \), stays above \(M_{w_\epsilon}^- = \{x \in M : x \cdot w_\epsilon \leq s\} \). Decreasing \(s \), there exists \(s_0 > 1 \) such that \(R_s(M_{w_\epsilon}^+) \) meets \(M_{w_\epsilon}^- \) for the first time either \(i \) tangentially at a point of \(M_{w_\epsilon, s_0}^- \) or \(ii \) transversally at \(x_{w_\epsilon} \in \partial M \). It is easy to see that \(i \) is impossible for sufficiently small \(\epsilon > 0 \).

We show that \(ii \) is impossible for sufficiently small \(\epsilon > 0 \). Since \(P \in T \), \(\overline{OP} \cap M \) contains a point \(P' \in \Pi_{w_\epsilon}^+ \) for some small \(\delta > 0 \). It follows that, for sufficiently small \(\epsilon > 0 \), the line \(P + tw_\epsilon, t \in \mathbb{R} \), intersects \(M \) at a point \(\hat{P} \in \Pi_{w_\epsilon}^+ \) close to \(P' \), for some \(\delta > 0 \). Let \(B = \frac{\hat{P}}{2} \). Then
\[\text{dist}\((B, \Pi_{w_\epsilon}^+) < s_0 \) and \(\text{dist}(P, \Pi_{w_\epsilon}^+) \leq \text{dist}(P, B) \).
\]
On the other hand, for sufficiently small \(\epsilon > 0 \)
\[\text{dist}(P, B) \leq \text{dist}(\hat{P}, \Pi_{w_\epsilon}^+) \leq \text{dist}(x_{w_\epsilon}, \Pi_{w_\epsilon}^+) \].
Hence
\[s_0 - R_{s_0}(P) \cdot w_s/|w_s| \leq s_0 - x_0 \cdot w_s/|w_s|. \]

Let \(w^\perp \) be a vector with \(w^\perp \perp w_s, w^\perp \perp (\Pi \cap \Pi_{s_0}^\perp) \) and \(w^\perp \cdot e_{n+1} > 0 \).

Suppose that \(\Pi_{w^\perp}^\perp \) passes through \(P \). From the choice of \(P \), we see that the function \(s_0 - x \cdot w_s/|w_s| \) on \(R_{s_0}(M_{w^\perp,s_0}) \cap \Pi_{w^\perp}^\perp \) attains maximum at \(P \). From (5), it follows that \(s_0 - x \cdot w_s/|w_s| \) on \(R_{s_0}(M_{w^\perp,s_0}) \) attains an interior local maximum, which is a contradiction. Hence iii) cannot happen, which completes the proof of Step I).

Step II) We show that \(M \) is rotationally symmetric. The proof is similar to the proof of Lemma 2.4. \(\tilde{M} = SR_1(M) \cup \{O\} \) is \(C^1 \) with \(T_0 \tilde{M} = \Pi \), and meets \(S^n(O,1) \) in constant angle \(\gamma \). Since \(M \) is a graph over \(\Pi \), \(R_0(M^\perp_0) \) lies above \(M^\perp_0 \), and is transversal to \(M^\perp_0 \) along \(R_0(M^\perp_0) \cap M^\perp_0 \). Otherwise, there is either i) a point \(\tau \in (R_0(M^\perp_0) \cap M^\perp_0 \setminus \Pi \) or ii) \(\tau \in M^\perp_0 \cap \Pi \) where \(R_0(M^\perp_0) \) and \(M^\perp_0 \) are tangent. In both cases, \(M \) cannot be a graph over \(\Pi \).

Fix a unit vector \(v \in \Pi \). Increasing \(\theta \) from 0 to \(\pi/2 \), there is \(\theta_v \) for which \(R_{\theta_v}(M^\perp_0) \) and \(M^\perp_0 \) meet tangentially for the first time either at an interior point \(\tilde{x} \) of \(M^\perp_0 \) or at a point on \(\partial M^\perp_0 \). If \(\theta_v = \pi/2 \) and \(\tilde{x} = O \), then we repeat the above process with \(-v \) instead of \(v \). Then we get a new \(\theta_{-v} \) and \(\tilde{x} \) such that either \(\theta_{-v} \neq -\pi/2 \) or \(\theta_{-v} = \pi/2 \) and \(\tilde{x} \neq O \). As in the proof of Lemma 2.4, we see that \(V_0 \) is a symmetry hyperplane of \(M \), and \(\theta_0 = \pi/2 \). Since \(v \) is arbitrary, \(M \) is rotationally symmetric about the \(x_{n+1} \)-axis.

If \(\partial M \) intersects both \(\Pi^+ \) and \(\Pi^- \), then the projection \(p \) might not be onto \(B^n(O,1) \subset \Pi \). It would be interesting to prove Theorem 2.5 without conditions on \(\partial M \).

3. Minimal hypersurfaces tangent to a convex rotational hypersurface

We assume that either \(a > 0 \) in (1) or the asymptotic hyperplane \(\Pi_{a,M}^\perp \) stays above \(\partial M \) as in §2, and \(n_M \cdot e_{n+1} \geq 0 \).

Theorem 3.1. Let \(S \subset R^{n+1} \) be a convex \(C^2 \) hypersurface symmetric about a hyperplane \(P \). Let \(M \subset R^{n+1} \) be an embedded minimal hypersurface with one end which is regular at infinity. Assume \(\partial M \) is compact and \(M \) is tangent to \(S \). If \(n_M \) is parallel to \(P \), then \(M \) is symmetric about \(P \).

Since we assume that \(\partial M \) is compact, \(S \) can be assumed to be compact. We fix the unit normal vector \(\nu_S = \tilde{H}_S/|\tilde{H}_S| \) on \(S \), where \(\tilde{H}_S \) is the mean curvature vector of \(S \). Let \(B \) be the convex body bounded by \(S \). Then \(M \) divides \(R^{n+1} \setminus B \) into two parts. As in §2, let \(U_M \) be the component of \(R^{n+1} \setminus B \) that stays above \(M \).

Proof of Theorem 3.1. There is \(t_0 \) such that \(M \subset \Pi_{n,M,t_0}^+ \) and \(M \cap \Pi_{n,M,t_0} \subset \partial M \). It follows that that \(\nu = \nu_S \) along \(\partial M \).
By translating in the direction of \(n_M \), we may assume that \(S \cup M \) lies in \(\Pi_{n_M}^+ \) and outside of \(B^{n+1}(O,1) \). Let \(M = SR_1(M \cup (S \setminus \partial U_M)) \cup \{O\} \), which is \(C^1 \) and complete. Since \(M \) and \(S \) are embedded respectively, \(M \) is also embedded except for the points where \(SR_1(M) \) and \(SR_1(S) \) are tangent. We note that \(M \) is Alexandrov embedded, that is, bounds an embedded region in \(\mathbb{R}^{n+1} \).

For each unit vector \(v \in \Pi_{n_M} \) perpendicular to \(P \), we show that \(V_{\pi/2} \) is a symmetry hyperplane of \(M \). Note that \(V_0 = \Pi_{n_M} \) and \(V_0 \cap M = \{O\} \). Increasing \(\theta \) from 0 to \(\pi/2 \), there exists \(\theta_v \leq \pi/2 \) for which \(R_{\theta_v}(M_{\theta_v}^-) \) meets \(M_{\theta_v}^+ \) tangentially for the first time at \(x_f \in M_{\theta_v}^+ \).

First we show that \(\theta_v = \pi/2 \). Suppose that \(\theta_v < \pi/2 \). Since \(SR_1(S) \) is symmetric about \(V_{\pi/2} \), the point \(x_v \in M_{\theta_v}^- \) for which \(R_{\theta_v}(x_v) = x_f \) is an interior point of \(SR_1(M) \). The mean curvatures of \(R_{\theta_v}(M_{\theta_v}^-) \) and \(M_{\theta_v}^+ \) satisfy
\[
H_{M_{\theta_v}^+}(x_f) \leq H_{R_{\theta_v}(M_{\theta_v}^-)}(x_f).
\]
We note that \(\bar{H}(x_f) = H_{M_{\theta_v}^+}(x_f) \) and \(\bar{H}(x_v) = H_{R_{\theta_v}(M_{\theta_v}^-)}(x_f) \).

Let \(\bar{x} = (SR_1)^{-1}(x_f) \) and \(\bar{x}_v = (SR_1)^{-1}(x_v) \). By (3),
\[
\bar{H}(x_f) = H(\bar{x})(|\bar{x}|^2 + 2\bar{x} \cdot \nu(\bar{x})�\]
and
\[
\bar{H}(x_v) = 2\bar{x}_v \cdot \nu'(\bar{x}_v),
\]
where \(\nu' = \nu \) if \(x_v \in SR_1(M) \) and \(\nu' = \nu_S \) if \(x_v \in SR_1(S) \). Since \(SR_1 \) is conformal and \(R_{\theta_v}(M_{\theta_v}^-) \) and \(M_{\theta_v}^+ \) are tangent at \(x_f \), we have \(\bar{x} \cdot \nu_M(\bar{x}) = \bar{x}_v \cdot \nu'(\bar{x}_v) \). If \(x_f \not\in \bar{S} \setminus \bar{M} \), then \(H(\bar{x}) > 0 \) by the choice of \(\nu_S \) and
\[
\bar{H}(x_v) < \bar{H}(x_f).
\]
This is a contradiction. Hence \(x_f \in SR_1(M) \). Note that \(R_{\theta_v}(M_{\theta_v}^-) \) is tangent to \(M_{\theta_v}^+ \) at \(x_v \) and lies on one side of \(M_{\theta_v}^+ \). Since \(R_{\theta_v}(M_{\theta_v}^-) \) and \(M_{\theta_v}^+ \) are both minimal, they coincide. Hence \(V_{\theta_v} \) is a symmetry hyperplane of \(M \) and \(n_M \in V_{\theta_v} \neq V_{\pi/2} \), which is a contradiction.

Now we show that \(V_{\pi/2} \) is a symmetry hyperplane of \(M \). If \(V_{\pi/2} \) is not a symmetry hyperplane of \(M \), then we repeat the above argument with \(-v \). We must have \(\theta_{-v} < \pi/2 \), which is a contradiction. Therefore \(V_{\pi/2} \) is a symmetry hyperplane of \(M \).

Suppose that \(M \) satisfies the conditions of the above Theorem.

Corollary 3.2. If \(S \) is rotationally symmetric about the \(x_{n+1} \)-axis, then \(M \) is symmetric about each hyperplane containing \(x_{n+1} \)-axis and parallel to \(n_M \). If \(n_M = e_{n+1} \), then \(M \) is either a hyperplane or an \(n \)-dimensional catenoid.

Proof. If \(S \) is rotationally symmetric about the \(x_{n+1} \)-axis, then \(S \) is symmetric about each hyperplane containing the \(x_{n+1} \)-axis. Therefore \(M \) is symmetric about each hyperplane containing the \(x_{n+1} \)-axis and parallel to \(n_M \).
If \(n_M = e_{n+1} \), then \(M \) is symmetric about each hyperplane containing \(x_{n+1} \)-axis. Hence \(M \) is rotationally symmetric about the \(x_{n+1} \)-axis. □

References

Sung-Ho Park
Graduate School of Education
Hankuk University of Foreign Studies
Seoul 02450, Korea
Email address: sunghopark@hufs.ac.kr