DOI QR코드

DOI QR Code

선박평형수처리장치 성능 평가를 위한 해양 바이러스 생사판별 방법 개발

Development of Marine Virus-like Particles Live/Dead Determination Method for the Performance Evaluation of Ballast Water Treatment System

  • 현봉길 (한국해양과학기술원 선박평형수연구센터) ;
  • 우주은 (한국해양과학기술원 선박평형수연구센터) ;
  • 장풍국 (한국해양과학기술원 선박평형수연구센터) ;
  • 장민철 (한국해양과학기술원 선박평형수연구센터) ;
  • 이우진 (한국해양과학기술원 선박평형수연구센터) ;
  • 배미경 (한국해양과학기술원 선박평형수연구센터) ;
  • 신경순 (한국해양과학기술원 선박평형수연구센터)
  • Hyun, Bonggil (Ballast Water Research Center, Korea Institute of Ocean Science and Technology) ;
  • Woo, Joo-Eun (Ballast Water Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jang, Pung-Guk (Ballast Water Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jang, Min-Chul (Ballast Water Research Center, Korea Institute of Ocean Science and Technology) ;
  • Lee, Woo-Jin (Ballast Water Research Center, Korea Institute of Ocean Science and Technology) ;
  • Bae, Mi-Kyung (Ballast Water Research Center, Korea Institute of Ocean Science and Technology) ;
  • Shin, Kyoungsoon (Ballast Water Research Center, Korea Institute of Ocean Science and Technology)
  • 투고 : 2020.09.04
  • 심사 : 2021.01.08
  • 발행 : 2021.01.31

초록

본 연구는 향후 보다 강화될 것으로 예측되어지는 USCG Phase II 형식승인시험을 대비하기 위해 SYBR Green I과 SYBR Gold의 염색 효율을 비교한 후 염색 효율이 높은 시약을 실제 선박평형수처리장치(electrolysis type, UV + electrolysis type)를 통과한 처리수에 적용해서 보았다. 시료의 부피가 0.5 mL ~ 2 mL, 염색 시약(Stock solution)을 100배 및 200배 희석한 조건에서 염색된 바이러스가 가장 선명하게 관찰되었다. SYBR Green I과 SYBR Gold의 염색효율은 장목한 해수조건의 실험구에서 유의한 차이를 보이지 않았지만, SYBR Gold의 노란색에 비해 SYBR Green I으로 염색된 시료에서 발현하는 녹색 형광이 보다 선명해서 관찰이 용이한 것으로 확인되었다. 선박평형수처리장치(electrolysis type, UV + electrolysis type)를 통과하지 않은 실험수 및 대조수에서의 해양 바이러스 현존량은 약 109~1010 VLP 100 mL-1 으로 확인된 반면, 처리수에서는 살아 있는 바이러스가 관찰되지 않았다. 실험수 결과를 보면, SYBR Green I은 해수, 기수, 담수 조건에서 효과적으로 염색이 되는 것으로 확인되었다. 다양한 선박평형수처리기술에 따른 추가적인 검증 및 염색 방법 개발이 필요하지만, SYBR Green I 염색법은 USCG Phase II 미국형식승인시험 바이러스 생산판별에 좋은 대안이 될 수 있을 것으로 판단된다.

To prepare more stringent regulations for USCG Phase II ballast water management, this study investigated the staining efficiency of SYBR Green I(SGI) and SYBR Gold(SG) on the virus-like particle (VLP). A dye with high staining efficiency was applied to the treated water that was passed through the ballast water treatment system (BWTS). VLP staining was observed most clearly under the 100-fold and 200-fold dilution of the stock solution when the volume of filtered samples was 0.5 mL to 2 mL. The staining efficiency of SGI and SG did not show a significant difference. On the other hand, the green fluorescence of viruses in the sample stained with SGI was more pronounced than in the samples stained with SG (expressed yellow fluorescence), making it easier to observe. The abundance of VLP in the test water and control water treatments that did not pass through the two types of BWTS (electrolysis type, UV + electrolysis type) was approximately 109 - 1010 VLP 100 mL-1. In contrast, no stained VLP was observed in the treated water treatments. Moreover, SGI was confirmed to be effectively stained under various salinity conditions, including seawater, brackish water, and freshwater. Further verification tests and development of staining methods under various BWTS are required, but the SGI staining method is believed to be a good alternative to the VLP live/dead determination of the USCG Phase II type approval test.

키워드

참고문헌

  1. A. I. Culley, N. A. Welschmeyer, "The abundance, distribution, and correlation of viruses, phytoplankton, and prokaryotes along a Pacific Ocean transect", Limnology and Oceangraphy, Vol. 47, No. 5, pp. 1508-1513, 2002. DOI: https://doi.org/10.4319/lo.2002.47.5.1508
  2. E. S. Choi, G. Lee, D. Kim, C. K. Auh, J. Park, Y. Chung, T. K. Lee, "Seasonal Fluctuations of Marine Viral Abundances and Physicochemical Parameters in Gwangyang Bay", Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 11, pp.5615-5622, 2012 DOI: https://doi.org/10.5762/KAIS.2012.13.11.5615
  3. IMO, "International convention for the control and management of ship's ballast water and sediments", IMO BWM/CONF/36. International Maritime Organization, London, UK, 2004 http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Control-and-Management-of-Ships%27-Ballast-Water-and-Sediments-(BWM).aspx
  4. U.S. Coast Guard, "USCG ballast water discharge standard final programmatic environmental impact statement", 2012. http://www.regulations.gov/#!documentDetail;D¼USCG-2001-10486-0468
  5. S. Hara, K. Terauchi, L. Koike, "Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy", Applied Environmental Microbiology, Vol. 57, pp.2731-2734, 1991. DOI: https://dx.doi.org/10.1128/AEM.57.9.2731-2734.1991
  6. M. G. Weinbauer, C. A. Suttle, "Comparison of epifluorescence and transmission electron microscopy for counting viruses in natural marine waters", Aquatic Microbial Ecology, Vol. 13, pp.225-232, 1997. DOI: https://dx.doi.org/10.3354/ame013225
  7. R. T. Noble, J. A. Fuhrman, "Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria", Aquatic Microbial Ecology, Vol. 14, pp.113-118, 1998. DOI: https://dx.doi.org/10.3354/ame014113
  8. J. Leichsenring, J. Lawrence, "Effect of mid-oceanic ballast water exchange on virus-like particle abundance during two trans-Pacific voyages", Marin Pollution Bulletin, Vol. 62, No. 5, pp.1103-1108, 2011. DOI: https://dx.doi.org/10.1016/j.marpolbul.2011.01.034
  9. A. Patel, R. T. Noble, J. A. Steele, S. S. Michael, I. Hewson, J. A. Fuhrman, "Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I", Nature Protocols, Vol. 2, No. 2, 269-276, 2007. DOI: https://dx.doi.org/10.1038/nprot.2007.6
  10. A. Shibata, Y. Goto, H. Saito, T. Kikuchi, T. Toda, S. Taguchi, "Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy", Aquatic Microbial Ecology, Vol. 43, No. 3, pp. 221-231, 2006. DOI: https://dx.doi.org/10.3354/ame043223