DOI QR코드

DOI QR Code

Development of SILS platform for application system based on AR and UAV

증강현실과 UAV 기반 응용 시스템을 위한 SILS 플랫폼 개발

  • Cho, Wan Joo (Engineering Research Institute, Gyeongsang National university) ;
  • Kang, Moon Hye (Gyeongnam National university of Science and Technology) ;
  • Moon, Yong Ho (School of Aerospace and Software Eng., Gyeongsang National university)
  • 조완주 (경상대학교 공학연구원) ;
  • 강문혜 (경남과학기술대학교 교양학부) ;
  • 문용호 (경상대학교 공과대학 항공우주및소프트웨어공학부)
  • Received : 2020.09.29
  • Accepted : 2020.12.22
  • Published : 2021.02.28

Abstract

Recently, the development of UAV application system using augmented reality (AR) has received much attention. In general, the design and implementation of UAV application system are verified with SILS techniques before actual flight experiments. However, existing SILS environment cannot be used to verify the application system based on AR and UAV because it does not include key features related to AR. To overcome this problem, we proposed an SILS platform that could be effectively used for the development of application systems based on AR and UAV. Simulation results on accuracy, efficiency, and scalability show that the proposed platform could be effectively utilized for the development of AR and UAV based-application systems.

최근 증강현실을 활용한 UAV 응용 시스템 개발에 많은 관심이 집중되고 있다. 일반적으로 UAV 응용 시스템 개발에서는 실제 비행 실험을 수행하기 전에 SILS 기법을 적용하여 시스템의 설계 및 구현을 검증하고 있다. 그러나 기존 SILS 환경은 증강현실 관련 핵심 사항들을 반영하지 못하고 있으므로 증강현실을 활용한 UAV 응용 시스템에 대한 효과적인 검증이 불가능하다. 본 논문에서는 이러한 문제를 극복하기 위하여 증강현실과 UAV 기반 응용 시스템 개발에 효율적으로 활용될 수 있는 SILS 플랫폼을 제안하였다. 정확성, 효율성, 확장성에 대한 모의 실험 결과는 제안하는 플랫폼이 증강현실과 UAV 기반 응용 시스템 개발에 효과적으로 활용될 수 있음을 보여준다.

Keywords

References

  1. Changhwan Joe, Seongjoon Park, Inseop Um, Hwangnam Kim, "Exploring Trends and Technologies in Drone Development," Communications of the Korean Institute of Information Scientists and Engineers, vol 37, no. 1, pp. 10-19, January 2019.
  2. G. Mehrooz, E. Ebeid and P. Schneider-Kamp, "System Design of an Open-Source Cloud-Based Framework for Internet of Drones Application," 22nd Euromicro Conference on Digital System Design, pp. 572-579, 2019.
  3. A. R. Fayjie, A. Ramezani, D. Oualid and D. J. Lee, "Voice enabled smart drone control," Ninth International Conference on Ubiquitous and Future Networks, pp. 119-121, 2017.
  4. Q. Bu, F. Wan, Z. Xie, Q. Ren, J. Zhang and S. Liu, "General simulation platform for vision based UAV testing," IEEE International Conference on Information and Automation, pp. 2512-2516, 2015.
  5. Doyoon Kim, Sung Tae Moon, Lee Dongoo, "Simulation System Development for Swarm Flight Reconnaissance System" The Korean Institute of Information Scientists and Engineers, pp. 661-663, June 2019.
  6. Erat, O., Isop, W. A., Kalkofen, D., and Schmalstieg, D., "Drone-Augmented human vision: Exocentric control for drones exploring hidden areas." IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 4, pp. 1437-1446, April 2018. https://doi.org/10.1109/TVCG.2018.2794058
  7. Vaquero-Melchor, D., Garcia-Hospital, J., Bernardos, A. M., Besada, J. A., and Casar, J. R., "Holo-mis: A mixed reality based drone mission definition system." 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, Conference Proceedings Adjunct, pp. 365-370, 2018.
  8. Teixeira, J. M., Ferreira, R., Santos, M., and Teichrieb, V., "Teleoperation using google glass and ar, drone for structural inspection." 16th Symposium on Virtual and Augmented Reality, pp. 28-36, 2014.
  9. Widiyanti, D. E., and Shin, S. Y. "UAV-assisted Military Mapping System using HoloLens UAV-assisted Military Mapping System using HoloLens." KICS Winter Conference, pp. 1260-1261, February 2020.
  10. Raul Llasag, Diego Marcillo, Carlos Grilo, Catarina Silva, "Human Detection for Search and Rescue Applications with UAVs and Mixed Reality Interfaces.", 14th Iberian Conference on Information Systems and Technologies, pp. 1-6, 2019.
  11. Mori, A., and Itoh, Y. "Dronecamo: Modifying human-drone comfort via augmented reality.", Adjunct Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality, pp. 167-168, 2019.
  12. Pradhan, P., "Development of Holographic User Interface for UAV Ground Control using Microsoft HoloLens." ryerson university faculty of engineering, architecture and science, April 2017.
  13. Jeong, M., Lee, H., Bae, M., Shin, D. B., Lim, S. H., & Lee, K. B., "Development and Application of the Smart Helmet for Disaster and Safety.", 9th International Conference on Information and Communication Technology Convergence, pp. 1084-1089, 2018.
  14. Cai, Z., Chen, M., and Yang, L., "Multi-source information fusion augmented reality benefited decision-making for unmanned aerial vehicles: A effective way for accurate operation.", Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications, pp. 174-178, 2011.
  15. Sreeram, S., Nisha, K. K., and Jayakrishnan, R., "Virtual Design Review and Planning Using Augmented Reality and Drones.", Proceedings of the 2nd International Conference on Intelligent Computing and Control Systems, pp. 915-918, 2018.
  16. Unal, M., Bostanci, E., Sertalp, E., Guzel, M. S., and Kanwal, N. "Geo-location Based Augmented Reality Application for Cultural Heritage Using Drones.", 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, 2018.
  17. S. Thon, D. Serena-Allier, C. Salvetat, F. Lacotte, "Flying a drone in a museum: An augmented-reality cultural serious game in Provence.", Digital Heritage International Congress, vol. 2, pp. 669-676, November 2013.
  18. Mixed Reality Tool Kit manual, https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/WelcomeToMRTK.html.
  19. UWP framework manual, https://docs.microsoft.com/ko-kr/windows/uwp/get-started/universal-application-platform-guide.
  20. MAVSDK manual, https://mavsdk.mavlink.io/develop/en/index.html.
  21. J. Zhao, R. S. Allison, M. Vinnikov and S. Jennings, "The Effects of Visual and Control Latency on Piloting a Quadcopter Using a Head-Mounted Display," 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, pp. 2972-2979, 2018.
  22. JMavsim (2020 August 20), https://github.com/PX4/jMAVSim.
  23. Shital Shah and Debadeepta Dey and Chris Lovett and Ashish Kapoor, "AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles", Field and Service Robotics, pp. 621-63, November 2017.