DOI QR코드

DOI QR Code

Basic Characteristic Verification of High-damping Laminated Solar Panel with Viscoelastic Adhesive Tape for 6U CubeSat Applications

점탄성 테이프를 적용한 6U 큐브위성용 고댐핑 적층형 태양전지판의 기본 특성 검증

  • Received : 2020.10.06
  • Accepted : 2020.10.29
  • Published : 2021.02.28

Abstract

PCB-based deployable solar panel is mainly used for CubeSat due to its lightweight and easy of electrical connection. However, as the size of solar panel increases, there is a limit to ensuring the structural safety of solar cells due to excessive dynamic displacement under launch vibration environment. In previous mechanical designs, for the minimization of dynamic deflection, panel stiffness is increased by applying additional stiffeners made of various materials such as aluminum or composite. However, it could have disadvantages for CubeSat design requirements due to limited mass and volumes. In this study, a high-damping 6U solar panel was proposed. It had superior damping characteristic with a multi-layered stiffener laminated with viscoelastic acrylic tapes. Basic characteristics of this solar panel were measured through free-vibration tests. Design effectiveness of the solar panel was validated through qualification-level launch vibration test. Based on test results, vibration characteristics of a typical PCB solar panel and the high-damping laminated solar panel were predicted and a comparative analysis was performed.

PCB 기반 전개형 태양전지판은 경량화 및 전기적 연결의 용이성으로 주로 큐브위성에 사용되나, 태양전지판의 면적이 증가할수록 발사환경에서 유발되는 굽힘거동이 증가하기 때문에 태양전지셀의 구조건전성 보장에 한계가 있다. 종래에는 태양전지판의 강성증가를 통해 굽힘거동을 최소화하고자 알루미늄 및 복합재 기반의 보강재를 또는 태양전지판을 적용하였지만, 태양전지판의 부피 및 무게 증가로 제한적인 설계요구조건을 가진 태양전지판의 단점으로 작용한다. 본 연구에서는 점탄성 테이프로 다층 박판을 적층하여 고댐핑 특성 구현이 가능한 6U 규격의 고댐핑 적층형 태양전지판을 제안하였다. 제안된 태양전지판의 기본특성파악을 위해 자유감쇠시험을 수행하였으며, 인증수준의 발사진동시험을 통해 설계유효성을 입증하였다. 또한, 시험결과를 토대로 일반 PCB 태양전지판과 고댐핑 적층형 태양전지판의 진동특성을 예측하고 비교분석을 수행하였다.

Keywords

References

  1. S. H. Han, Y. J. Choi, D. H. Cho, W. S. Choi, H. C. Gong, H. D. Kim and G. H. Choi, "Analysis of Cubesat Development Status in Korea," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 11, pp. 975-988, 2017. https://doi.org/10.5139/JKSAS.2017.45.11.975
  2. Y. Xue, Y. Li, J. Guang, X. Zhang and J. Gue, "Small Satellite Remote Sensing and Applications - history, current and Future," International Journal of Remote Sensing, vol. 29, no. 15, pp. 4339-4372, 2008. https://doi.org/10.1080/01431160801914945
  3. https://www.planet.com/
  4. https://spire.com/
  5. S. H. Kim, Y. H. Jeon, H. R. Kim and H. U. Oh, "Functional Verification of the Solar Panel Separation for Pico-class Satellite Applications using Spring-loaded Pogo-pin," Journal of Aerospace System Engineering, vol. 12, no. 5, pp. 69-75, 2018. https://doi.org/10.20910/JASE.2018.12.5.69
  6. T. Y. Park, B. G. Chae and H. U. Oh, "Development of 6U CubeSat's Deployable Solar Panel with Burn Wire Triggering Holding and Release Mechanism," International Journal of Aerospace Engineering, vol. 2019, pp. 1-13, 2019
  7. S. Bhattarai, H. Kim and H. U. Oh, "CubeSat's Deployable Solar Panel with Viscoelastic Multilayered Stiffener for Launch Vibration Attenuation," International Journal of Aerospace Engineering, vol. 2020, pp. 1-10, 2020
  8. JEM Payload Accommodation Handbook -Vol. 8 - Small Satellite Deployment Interface Control Document, JAXA, 2015
  9. https://www.isispace/
  10. L. S. Lim, T. D. V. Bui, M. S. C. Tissera, V. H. P. Pham, R. Abhishek, J. J. Soon, J. M. Lew, H. Aung, S. T. Goh and S. S. Chen, "VELOX-II: Challenges of Developing a 6U Nanosatellite," AIAA SPACE 2016, pp. 1-11, 2016.
  11. S. C. Kwon, M. S. Jo, D. H. Ko and H. U. Oh, "Viscoelastic Multilayered Blade-type Passive Vibration Isolation System for a Spaceborne Cryogenic Cooler," Cryogenics, Vol. 105, 2020
  12. K. Minesugi and J. Onoda, "Passive Vibration Suppression using Thin Tape with Viscous Lamina," AIAA 36th Structures Structural Dynamics and Materials Conference, pp. 200-206, 1995
  13. http://www.3m.com
  14. E. Gaddy, M. Douglas, P. Sharps, C. Kerestes, C. Sulyma, J. Nichols and C. Drabenstadt, "Transformation Solar Array Option I Final Report," NASA Technical Reports, pp. 1-84, 2017.
  15. T. Irvine, "Shock and Vibration Response Spectra Course: Unit 15," Indi-rect Saturation Removal, pp. 1-6.
  16. Structural Design Requirements and Factors of Safety for Spaceflight Hardware, NASA, 2011