DOI QR코드

DOI QR Code

Development of small multi-copter system for indoor collision avoidance flight

실내 비행용 소형 충돌회피 멀티콥터 시스템 개발

  • Moon, Jung-Ho (Department of Unmanned Aircraft Systems Engineering, Cheongju University)
  • 문정호 (청주대학교 무인항공기학과)
  • Received : 2020.12.15
  • Accepted : 2021.01.20
  • Published : 2021.02.28

Abstract

Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

최근 멀티콥터는 비행 안정성 향상을 위해 다양한 충돌회피 센서를 탑재하고 있다. LiDAR를 이용해 3차원 위치를 인식하거나 다수 카메라와 실시간 SLAM 기술을 이용해 장애물과의 상대 위치를 계산하기도 한다. 또한 소형 프로세스와 카메라로 구성된 3D 깊이 센서를 사용하기도 한다. 본 연구에서는 충돌회피 소프트웨어 기술 개발을 위한 플랫폼으로써 상용 부품을 활용해 실내 비행이 가능한 소형 충돌회피 멀티콥터 시스템을 개발하였다. 멀티콥터 시스템은 LiDAR, RealSense, GPU 보드를 탑재하였고, 비행시험을 통해 YOLO 알고리즘 기반의 사물 인식 및 충돌회피 기능을 검증하였다. 이 논문에서는 시스템 설계/제작 및 탑재 장비 선정과정, 비행시험 결과에 관해 기술하였다.

Keywords

References

  1. Wang, Linlin, et al. "Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China." Sensors 19.3 (2019): 642. https://doi.org/10.3390/s19030642
  2. Skydio. About. https://skydio.com/about
  3. Dubey, Geetesh, Ratnesh Madaan, and Sebastian Scherer. "DROAN-Disparity-Space Representation for Obstacle Avoidance: Enabling Wire Mapping & Avoidance." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
  4. Carrio, A., Tordesillas, J., Vemprala, S., Saripalli, S., Campoy, P., & How, J. P. "Onboard Detection and Localization of Drones Using Depth Maps". IEEE Access, 8, (2020):30480-30490. https://doi.org/10.1109/access.2020.2971938
  5. Falanga, Davide, Kevin Kleber, and Davide Scaramuzza. "Dynamic obstacle avoidance for quadrotors with event cameras." Science Robotics 5.40 (2020).
  6. Jung, Sunggoo, et al. "A direct visual servoing‐based framework for the 2016 IROS Autonomous Drone Racing Challenge." Journal of Field Robotics 35.1 (2018): 146-166. https://doi.org/10.1002/rob.21743
  7. Smolyanskiy, Nikolai, et al. "Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness." 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.
  8. Saving lives with Everdrone and Intel RealSenseTM Technology, https://www.intelrealsense.com/everdrone
  9. Meier, Lorenz, Dominik Honegger, and Marc Pollefeys. "PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms." 2015 IEEE international conference on robotics and automation (ICRA). IEEE, 2015.
  10. Garberoglio, Leonardo, et al. "Choriboard III: a small and powerful flight controller for autonomous vehicles." 2018 Argentine Conference on Automatic Control (AADECA). IEEE, 2018.
  11. PX4 autopilot, Flight Review, https://review.px4.io
  12. Shafiee, Mohammad Javad, et al. "Fast YOLO: A fast you only look once system for real-time embedded object detection in video." arXiv preprint arXiv:1709.05943 (2017).